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Abstract

Modular programming is common practice in software development, and the vast ma-
jority of general-purpose programming languages use modularity concepts to aid soft-
ware engineers in designing and building complex systems based on reusable software
components. Answer Set Programming (ASP), in comparison, is a popular paradigm
for declarative programming and knowledge representation, but methods for reusing
subprograms and program elements in ASP have not arrived for common use yet.

This thesis proposes Modular Nonmonotonic Logic Programs (MLPs), which are
disjunctive logic programs under answer set semantics with modules that have con-
textualized input. Such programs incorporate a call by value mechanism and allow for
unrestricted calls between modules—including mutual and self recursion—as a new
approach to extend ASP with module constructs akin to those found in conventional
programming. We define a model-theoretic semantics for this extended setting, show
that many desired properties of ordinary logic programming generalize to modular
ASP, and determine the computational complexity of the new formalism.

For the purpose of implementation, we consider rewriting techniques that make
MLP semantics amenable to off-the-shelf ASP solvers. We present translations that
take an MLP with module input and rewrite them in stages to a combined logic pro-
gram without input that is evaluable with ASP reasoners. This operation comes at
the price of inflating the program exponentially, but complexity-theoretic assumptions
suggest that this is unavoidable. The alternative macro expansion technique applicable
to syntactically restricted MLPs does not incur the blowup observable in the general
setting, and we make use of it to develop an application by embedding hybrid Descrip-
tion Logic Programs into MLPs. This effectively unites MLP with established Datalog
engines as backbone for the computation, which we experimentally evaluate.

We characterize answers sets in terms of classical (Herbrand) models of proposi-
tional, first-, and second-order sentences, extending a line of research for conventional
logic programs. To this end, we lift on one side well-known loop formulas to MLPs,
and otherwise augment ordered program completion for MLPs, which avoids explicit
loop formula construction by auxiliary predicates. A further result is a study on the re-
lationship of MLPs and DLP-functions, which is a notable formalism for compositional
modular ASP with well-defined input/output interface. These investigations widen our
understanding of MLPs and may prove beneficial for further semantic analysis and im-
plementation perspectives.






Kurzfassung

Modulare Programmierung ist gingige Praxis in der Softwareentwicklung, und die
tiberwiegende Mehrzahl universeller Programmiersprachen verwenden Modularitats-
konzepte, um Softwareentwicklern beim Entwerfen und Konstruieren komplexer Sys-
teme basierend auf wiederverwendbaren Softwarekomponenten zu helfen. Im Ver-
gleich dazu sind Methoden zur erneuten Verwendung von Unterprogrammen und Pro-
grammelementen in der Answer Set Programmierung (ASP), einem weitverbreiteten
Paradigma zur deklarativen Programmierung und Wissensreprasentation, noch nicht
im allgemeinem Gebrauch angekommen.

Diese Arbeit schldgt Modulare Nichtmonotone Logische Programme (MLP) vor, das
heif3t, disjunktive logische Programme unter Antwortmengen-Semantik mit Modulen,
die kontextuellen Input unterstiitzen. Solche Programme integrieren einen Wertaufruf-
Mechanismus und erlauben uneingeschrankte Aufrufe zwischen den Modulen—inkl-
usive wechselseitiger sowie Selbst-Rekursion—, um ASP mit Konstrukten zu erwei-
tern, die auch in konventioneller Programmierung aufzufinden sind. Wir definieren
eine modell-theoretische Semantik fiir diese erweiterte Umgebung, zeigen, dass viele
gewlnschte Eigenschaften der gewohnlichen logischen Programmierung sich verall-
gemeinern lassen hin zu modularem ASP, und bestimmen die Berechnungskomplexitit
des neuen Formalismus.

Zwecks Implementierung betrachten wir Umformungstechniken, um MLP zugéng-
lich fir gebrauchsfertige ASP Solver zu machen. Wir préasentieren Konvertierungen,
die ein MLP mit Modul Input entgegennehmen und diese sukzessive in ein zusam-
mengesetztes logisches Programm ohne Input umschreiben, sodass diese dann fiir ASP
Reasoner auswertbar werden. Diese Operation hat ihren Preis in einem exponentiell
aufgebldhtem Programm, jedoch legen Annahmen aus der Komplexitatstheorie nahe,
dass dies unvermeidlich ist. Die alternative Makroexpansionstechnik anwendbar auf
syntaktisch eingeschriankte MLP erleidet diese Vergrofierung, die im allgemeinen Rah-
men wahrnehmbar ist, jedoch nicht. Daher benutzen wir diese, um eine Anwendung
durch Einbetten von hybriden Beschreibungslogikprogrammen in MLP zu entwickeln.
Dies vereint MLP mit bew&hrten Datalog Engines als Riickgrat zur Auswertung auf
wirksame Weise, welche wir experimentell evaluieren.

Wir charakterisieren die Antwortmengen anhand von klassischen (Herbrand) Mo-
dellen von Satzen in propositionaler Logik sowie Pradikatenlogik erster und zweiter
Stufe, und erweitern dadurch eine Forschungsrichtung innerhalb der konventionellen
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logischen Programmierung. Dazu generalisieren wir einerseits die bekannten Loop-
Formeln, und andererseits erweitern wir geordnete Programmvervollstindigung fiir
MLP, die explizite Loop-Formelerzeugung durch Hilfspradikate umgehen. Ein weite-
res Ergebnis ist ein Studie iiber den Zusammenhang von MLP und DLP-Funktionen,
ein bedeutender Formalismus fiir kompositionelles modulares ASP mit wohldefinier-
ter Input/Output Schnittstelle. Diese Untersuchungen vertiefen unser Verstandnis von
MLP, welche sich als niitzlich fiir weitere semantische Analysen und Implementie-
rungsperspektiven erweisen kénnten.
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Introduction

NSWER SET PROGRAMMING (ASP) is a well-established paradigm for declar-
ative programming with roots to be found in Logic Programming and in
Knowledge Representation and Reasoning, the branch of Artificial Intelli-
gence concerned with explicitly representing information using logical
formalisms. An advantage of ASP is to provide a versatile declarative modeling frame-
work with many attractive features that allow turning problem statements of compu-
tationally hard problems with little to no effort into executable formal specifications,
also called answer set programs. These programs can be used to describe and reason
over problems in a large variety of domains, for example, commonsense and agent
reasoning, diagnosis, deductive databases, software upgrade dependency handling,
planning, product configuration, bioinformatics, scheduling, shift design, Markov net-
work learning, and timetabling. See Brewka et al. (2011) for an overview article, the
book by Gebser et al. (2013) for the practical details on how to implement answer set
programs, and Brewka et al. (2016) for applications of answer set programming and
further in-depth material. ASP has a close relationship to other declarative model-
ing paradigms and languages, such as SAT solving (Biere et al., 2009), Satisfiability
Modulo Theories (SMT, see Barrett et al., 2009; Nieuwenhuis et al., 2006), automated
theorem proving (Robinson and Voronkov, 2001), Constraint Programming (CP, see
Rossi et al., 2006), and many others. All these formalisms have in common that they
were designed for solving demanding problems, many of which arise in applications
in Artificial Intelligence.

In ASP, problems are represented by nonmonotonic logic programs, such that the
stable models (or answer sets) of the program represent the solutions to a given problem
instance (Gelfond and Lifschitz,1991). As an example for a problem that can be solved
with ASP is the Sudoku puzzle, a highly successful number-placement riddle. Although
simple to explain, Sudoku is neither easy to solve nor easy to implement efficiently with
an imperative programming language. Given a 9 X9 grid, the goal of the Sudoku game
is to fill every cell in the grid with numbers in the range D = 1, ..., 9, such that each
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(a) Puzzle 3 (b) Unique solution

Figure 1.1: Classic Sudoku Puzzle 3 from WSC 2016
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(a) Puzzle 5 (b) Two solutions

Figure 1.2: Classic Sudoku Puzzle 5 from WSC 2016

d € D appears exactly once in every row, every column, and every 3 X 3 sub-grid that
composes the grid. A Sudoku problem instance is a partially filled grid, which must be
completed given the Sudoku constraints defined before.

Next, we will show three puzzles from the Official Practice Test for the 11th World
Sudoku Championship (WSC) 2016 (Demiger, 2016). The first Sudoku instance, WSC
Puzzle 3, is shown in[Figure 1.1a] It has a single solution presented with red numbers in
But there are further kinds of Sudoku instances: one kind admits more than
one solution, the other kind has no solution at all. shows WSC Puzzle 5,
which has two solutions shown in the first solution is displayed in blue
numbers in the bottom-left corners of the cells, the second solution uses red numbers
in the top-right corners of the cells. The cells with green background highlight the
alternative parts of each solution. A Sudoku instance without solution is the one in
WSC Puzzle 8; there is no way to fill the grid with numbers such that all
Sudoku constraints are satisfied.

Numerous Sudoku solving software and algorithms have been posed. A popular
approach to implement a Sudoku solver takes Knuth’s Dancing Link technique to im-
plement Algorithm D (Knuth, 2018), which is a nondeterministic procedure to find all
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N
|

654
7 3

Figure 1.3: Classic Sudoku Puzzle 8 from WSC 2016 (no solutions)

solutions to the Exact Cover problem (Garey and D. S. Johnson, [1979). Norvig (2006)
describes further methods based on constraint propagation and search. All implemen-
tations have in common that they use backtracking search to deal with the inherent
nondeterminism of Sudoku. In fact, the generalized n X n grid Sudoku problem has
been shown to be NP-complete (Yato and Seta, 2003), and this suggests that the ap-
proaches described before are a natural way to implement a Sudoku solver.

To show the merits of Answer Set Programming, we will provide an implementa-
tion based on Gringo (Gebser et al.,|2014c) and Clasp (Gebser et al.,|[2012), two programs
used to compute the answer set of a nonmonotonic logic program. Compared to an im-
perative implementation for Sudoku, which usually takes a few hundreds lines of code,
the declarative ASP version is almost atomic in scale, yet powerful and full-featured.
It consists of the four rules as given in The encoding uses many syntactic
shortcuts supported by Gringo that makes it easier to write answer set programs. The
formal definitions definitions for logic programs will be given in Chapter [2] but for the
purpose of explaining the program above, we do not go into details here. Answer set
programs consist of rules of the form

HEAD :- BODY1, ..., BODYn.

where HEAD, BODY1, ..., BODYn are atomic expressions. A rule should be read as HEAD

is satisfied if BODY1 through BODYn is satisfied; whenever HEAD is void, we call the
rule a constraint that would forbid solutions whenever BoDY1 through BODYn are true.
Atomic expressions are built from variables (which start with uppercase letters), con-
stants (which start with lowercase letters or digits), and functions and relations such
as addition and equality, respectively. mentions variables R, C, D, Q, B and
constants 1, 2,4, 7,9, the binary function +, and the binary relations =, > and ternary
relation cell.

The first rule of from line [4] through line [5| encodes all possible ways
to fill all nine 3 X 3 sub-grids by using a choice rule. E.g., when producing a solution
to WSC Puzzle 3 from an ASP solver would satisfy atoms cell(1,4,2) and
cell(7,3,7), i.e., cell(1,4, 2) encodes that the cell specified by row 1 and column 4 holds
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% (1) place exactly one digit D e€{l,..,9} for each cell identified by
% row R and column C on a 9x9 grid such that D is within a 3x3
% subgrid spanning (Q,B) to (Q+2,B+2), for Q,Be{l,4,7}
{ cell(R,C,D) : R =Q..Q+2, C =B..B+2 } =1 :- D = 1..9,
Q = (1;4;7), B = (1;4;7).

% (2) cell (R,C) may contain at most one digit D e€{l,..,9}
:- R =1..9, C =1..9, { cell(R,C,1..9) } > 1.

% (3) a digit D in row R may be assigned in at most one column C
:=D=1..9, R =1..9, { cell(R,1..9,D) } > 1.

% (4) a digit D in column C may be assigned in at most one row R
:-D=1..9, C=1..9, { cell(1..9,C,D) } > 1.

Listing 1.1: ASP Sudoku Solver

digit 2, while atom cell(7, 3, 7) states that row 7 and column 3 holds 7. Intuitively, the
head

{ cell(R,C,D) : R =Q..Q+2, C =B..B+2 } =1

of the first rule expresses that the cardinality of the set of all atoms cell(R, C, D) sat-
isfying the constraints on the variables R, C after the colon must be exactly 1. Note
that the semantics of above expression is similar to list comprehensions found in other
programming languages and set-builder notation in mathematics. The exact range for
the variables R, C, D, Q, B are given by the three body atoms D = 1..9 (D is a number
in the range 1t09),Q = (1;4;7) and B = (1;4;7) (there are three possible numbers
1,4,7 for Q, B), as well as the two atoms

R =0Q..Q+#2, C = B..B+2

from the choice construct in the head, which represents the sub-grid beginning at row
Q and column B.

Typically, answer set solvers evaluate ground programs, i.e., programs whose vari-
ables have been replaced by constants. Grounders such as Gringo perform this task
of intelligently replacing variables by constant symbols in all relevant ways. In the
program above the first rule alone would generate 81 ground instances (nine possible
values for D and three possible values each for Q and for B). E.g., one of the ground
rules is the choice rule

{ cell(1,4,2); cell(1,5,2); cell(1,6,2);

cell(2,4,2); cell(2,5,2); cell(2,6,2);

cell(3,4,2); cell(3,5,2); cell(3,6,2) } = 1.
that has been instantiated from the body whose variables are set to D = 2, Q = 1,
and B = 4.
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cell(1,2,1). cell(1,6,9). cell(1,7,7).

cell(2,1,2). cell(2,2,3). cell(2,3,4). cell(2,7,8).
cell(3,2,5). cell(3,8,2). cell(3,9,4).

cell(4,5,3). cell(4,9,7).

cell(5,4,4). cell(5,5,5). cell(5,6,6).

cell(6,1,9). cell(6,5,7).

cell(7,1,3). cell(7,2,9). cell(7,8,5).

cell(s,3,1). cell(s8,7,6). cell(s,8,7). cell(s,9,8).
cell(9,3,6). cell(9,4,1). cell(9,8,9).

Listing 1.2: ASP Sudoku instance encoding WCS Puzzle 3 from [Figure 1.1

There are nine possible ways to pick exactly one atom from the set above, but only
one of them can be correct. Together with the other 80 ground rules instantiated by
the first rule, choosing a number placement produces a combinatorial explosion, as
each of those rules require to pick exactly one atom. But for WCS Puzzle 3, there is
only one solution that is consistent with the rules of Sudoku, thus further constraints
are required to find that particular solution. Indeed, the last three rules in
are constraints that give us the desired solution. The counting aggregate

{ cell(R,C,1..9) } > 1

in the body of the second rule in line (8 evaluates to true whenever for given R and C
in the range 1, ..., 9 as specified by the two body atoms

R=1..9, C=1..9

there are at least two atoms satisfied in the set {cell(R,C,1), ..., cell(R,C,9)}. As an
example, after grounding one instance for the second rule would be
= { cell(1,4,1); cell(1,4,2); cell(1,4,3);

cell(1,4,4); cell(1,4,5); cell(1,4,6);
cell(1,4,7); cell(1,4,8); cell(1,4,9) } > 1.

which imposes a constraint for the cell in row R = 1 and column C = 4; again, we
would have 81 possible ground rules for the second rule. If other instantiations of
the first rule would try to generate a solution that satisfies cell(1, 4, 2) and cell(1,4, 3)
simultaneously (i.e., the numbers 2 and 3 occur in the cell in row 1 and column 4), then
the above counting aggregate would be true, and thus the constraint would invalidate
the try to get a filled grid, as such an assignment would violate the rules of Sudoku.
Similarly, the other two constraints in line [11)and [14{ would specify the regulations
that each of the rows and each of the columns in the grid must not hold the same
number more than once. As one can see, four ASP rules are sufficient to specify the
Sudoku regulations, but how can we bring our Sudoku encoding to solve a particular
problem instance? This is particularly easy in ASP, one needs to simply list all initial
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% gringo sudoku.lp wcs3.1lp | clasp

clasp version 3.3.3

Reading from stdin

Solving...

Answer: 1

cell(1,2,1) cell(1,6,9) cell(1,7,7) cell(2,1,2) cell(2,2,3) <

cell(2,3,4)
cell(4,5,3)
cell(s6,1,9)
cell(s,3,1)
cell(9,4,1)
cell(1,5,4)
cell(2,6,5)
cell(3,4,3)
cell(4,2,6)
cell(4,8,4)
cell(s,s8,8)
cell(6,6,2)
cell(7,4,6)
cell(s,1,4)
cell(9,1,5)

cell(2,7,8)
cell(4,9,7)
cell(6,5,7)
cell(s,7,6)
cell(9,8,9)
cell(1,8,3)
cell(2,8,6)
cell(3,5,6)
cell(4,3,2)
cell(5,1,1)
cell(s,9,2)
cell(6,7,3)
cell(7,5,8)
cell(s,2,2)
cell(9,2,8)

cell(3,2,5)
cell(5,4,4)
cell(7,1,3)
cell(s,s,7)
cell(1,1,6)
cell(1,9,5)
cell(2,9,9)
cell(3,s6,8)
cell(4,4,9)
cell(s,2,7)
cell(6,2,4)
cell(s,8,1)
cell(7,6,4)
cell(s,4,5)
cell(9,5,2)

cell(3,s8,2)
cell(s,5,5)
cell(7,2,9)
cell(s,9,8)
cell(1,3,8)
cell(2,4,7)
cell(3,1,7)
cell(3,7,1)
cell(4,6,1)
cell(s,3,3)
cell(s6,3,5)
cell(6,9,6)
cell(7,7,2)
cell(s,5,9)
cell(9,6,7)

cell(3,9,4)
cell(5,6,6)
cell(7,8,5)
cell(9,3,6)
cell(1,4,2)
cell(2,5,1)
cell(3,3,9)
cell(4,1,8)
cell(4,7,5)
cell(s,7,9)
cell(6,4,8)
cell(7,3,7)
cell(7,9,1)
cell(s,6,3)
cell(9,7,4)

A A S A

cell(9,9,3)

SATISFIABLE

Models 1

Calls .

Time : 0.007s (Solving: 0.00s 1st Model: 0.00s Unsat:
CPU Time : 0.000s

0.00s)

Listing 1.3: Gringo-Clasp Solving Pipeline

cells with their numbers as facts, i.e., rules having a ground atom in the head, but
whose body is void. For WCS Puzzle 3, this is encoded by the list of facts in

If we append|Listing 1.1/(as sudoku . 1p) to[Listing 1.2](aswc s 3 . 1p) as input for the

Gringo grounder, thus producing a ground program without variables, and then feed
the result into the Clasp answer set solver, we would get the desired solution. Invoking
Gringo and Clasp on the command line then results in the output shown in
This particular encoding for Sudoku shows the Answer Set Programming paradigm in
action (Janhunen and Niemeld, 2016) and can be used as a blueprint for practical im-
plementations that solve search and optimization problems. Conceptually,
shows a model for programming with this paradigm. In the left box, users first need
to provide a formalization of the problem statement in ASP, and a concrete problem
instance (usually as a set of facts) that can be extracted from instance data. Then, by
running a grounder, we obtain a ground program without variables that encodes our
problem instance (middle box). Next, we then try to find a solution to our problem
instance by running a solver, which tries to search for answer sets of the ground pro-
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ASP Program | Grounder Ground Solver
+Instance instantiates Program searches

Answer Set(s)

Figure 1.4: Answer Set Programming Paradigm

gram instance (right box). The answer sets are a representation of the actual solutions,
which can be extracted by transforming them into the proper solution format. If there
is no answer set for the ground program instance, then there are no solutions to the
problem instance.

The strategy outlined above hints already on a particular weak point of program-
ming in ASP. The ASP paradigm does not aid in reusing answer set programs per se.
Unlike any other programming language, there is no easy way to link a ready-made
program to a new and larger program, as every ASP encoding for a problem state-
ment must be tailored from scratch, possibly by manually assembling individual code
fragments. This thesis tries to remedy this particular weakness of ASP by presenting
a novel solution to modularity for answer set programs. Before we show the ideas of
Modular ASP, we first describe Modular Programming in general, which is common
and has spurred a lot of research in software engineering.

1.1 Modular Programming

A natural way to design large software systems for solving problems is to identify
easier to handle subproblems that can be solved independently from each other, and
then based on this analysis to craft corresponding software components that solve the
subproblems. Software elements grouped together this way form a module, and the
combination of such modules then gives an implementation for the whole problem and
a working software system. Software modules thus provide a key concept in Software
Engineering that helps developing software artifacts.

When following techniques based on structured design (Yourdon and Constantine,
1979), software elements building a module that are arranged based on relatedness of
functionality have a tendency to be more reliable and robust, and are easier to reuse.
Software design thus prefers systems with a high degree of cohesion, a software metric
that reflects the relationship between functionally related software components. A
software quality metric in contrast to cohesion is coupling, which is a measure for
the interdependence of modules in software. Naturally, loose coupling is preferred
over tight coupling, as loosely coupled modules tend to have increased reliability and
robustness. Thus, software with high cohesion and low coupling is said to have higher
structural quality. Testing software greatly benefits from structured programs, since
it involves defining well-suited interfaces to the components, which in turn assists
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writing test cases. When many programmers are working on a software project, the
strict component-wise software design is the only way to success.
Two questions arise from these findings:

1. How to shape software with these desired traits?

2. Is there built-in support in programming languages that assists constructing
modular software?

We will touch upon possible answers to these questions in the following paragraphs.

The first question is usually answered by creating software through careful archi-
tecture and design using sophisticated software engineering methodologies like In-
version of Control (R. E. Johnson and Foote, 1988) and dependency injection (Fowler,
2004), Aspect-Oriented Software Development (Murphy et al.,2001), or designing sys-
tems based on Service-Oriented Architecture (Papazoglou and van den Heuvel, 2007)
and microservices (Pautasso et al.,[2017a)b). Guidelines and examples for architectural
patterns like the ones mentioned here are described by Bass et al. (2013), Lakos (2016),
and Martin (2018), which give an in-detail account on software architecture and design.

The aforementioned strategies for building large software systems are state-of-the-
art, but they come at a cost of increased complexity and potentially turning software
applications into distributed systems, which adds further complexity to the runtime
dynamics and may be disadvantageous when looking for reliability and robustness in
software. That is, if we modularize software systems by building programs that com-
municate over computer networks, we must be aware of the following result, which
demonstrates that designing usable and flexible distributed systems is a challenging
task: Gilbert and Lynch (2002) show with their CAP Theorem that it is impossible to
achieve three highly desirable properties in a distributed software system all at once,
namely Consistency (e.g, a read request must return the data that a preceding write
request has written), Availability (the system must always respond to a request), and
Partition-tolerance (temporary disconnected networks must not result in a failing sys-
tem). We can only choose at most two out of the three properties, i.e., CA, CP, and
AP. Modern distributed software systems aim at achieving Availability and Partition-
tolerance, but drop the Consistency property; they use techniques like eventual con-
sistency (i.e., data updates over time eventually converge in the network of connected
systems) as a remedy to the missing hard consistency constraint (see Brewer, 2012, for
a discussion on remedial strategies).

In the context of Knowledge Representation and Logic Programming, frameworks
based on Heterogeneous Nonmonotonic Multi-Context Systems (Brewka and Eiter,
2007) address issues arising in distributed computing with suitable algorithms (Dao-
Tran et al., 2011, [2015) or asynchronous extensions to the equilibrium semantics (Dao-
Tran and Eiter, |2017). See also the discussion in Chapter

10
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Programming languages usually address the second question by adding a mod-
ule system to their core language. With such a feature, a compiler or interpreter can
aid building modules already at compile-time by dependency tracking of modules and
static code analysis. Most general-purpose languages have their own way to speci-
fying modules. Techniques like information hiding, abstraction, and structured pro-
gramming are well-established principles for breaking down subtasks and modules in
imperative programming (Dahl et al., 1972; Liskov and Zilles, 1974; Parnas, 1972), and
essentially any standard programming language has amenities that allow to define in-
put/output interfaces to modules for easy code-reuse in implementations of possibly
unrelated problems. Note that simple file inclusion mechanisms such as the C #include
preprocessor directive do not facilitate the flexibility requirements that a module can
cope with. Subtle issues such as duplicate definitions and circular #include dependen-
cies may arise when the same file is included in different parts of a program.

In this thesis, we are not concerned with modularity in software design and ar-
chitecture on the large scale, which is the target of the first question, rather, we aim
at providing a possible answer to the second question of adding modularity features
to the language level of nonmonotonic logic programming. We therefore continue to
define programming paradigms, which we later use to provide showcase examples for
modular programming,.

1.1.1 Programming paradigms

Usually, one can broadly categorize a general-purpose programming language into
two different paradigms: imperative programming and declarative programming. The
imperative paradigm features programming languages whose expressions may have
side-effects, i.e., calling a function with the same input values twice may lead to dif-
ferent results or errors, depending on the state of, e.g., global variables, the operating
system, or programs running on a different computer. Such functions are said to be ref-
erentially opaque. In contrast, the declarative programming paradigm mostly forbids
side-effects in their expressions, therefore calling functions in such languages behave
in the mathematical sense, where the same input always produces the same result.
Functions that behave in the mathematical sense are called referentially transparent or
pure. A more in-detail presentation of programming paradigms is given by Van Roy
and Haridi (2004), which provides further programming language classification crite-
ria and their definitions.

Since we are concerned here with logic-based programming, we will classify pro-
gramming languages into the following three broad categories:

« imperative programming languages,
« functional programming languages, and

11
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« logic-based programming languages.

That is, we split declarative languages into functional and logic-based programming
languages to make the distinction between their underlying model of computation
explicit: functions form the basis for functional languages, while relations are the basis
for logic programming languages (Hudak, 1989).

Programming languages of the imperative kind include procedural languages such
as C, and object-oriented languages such as C++, Java, C#, etc. Both procedural and
object-oriented languages are kept in the imperative paradigm because they both sat-
isfy the property of having implicit states and side-effects in their expressions. In
the functional programming realm, we include declarative languages such as Erlang,
Haskell, or ML, who by and large disregard side-effects in their expressions (for con-
cepts and historical evolution of functional programming see Hudak, 1989). For logic-
based programming languages, we include declarative languages such as Prolog (Apt,
1990; Shapiro and Sterling, [1994) and Answer Set Programs (Marek and Truszczynski,
1999; Niemel4, [1999).

DeRemer and Kron (1975) identified the need for a formal specification language
to describe the usage relationships between individual modules, a module interconnec-
tion language that allows to describe and integrate smaller software components for
building a whole system. The authors distinguished Programming-in-the-Large and
Programming-in-the-Small, the former being a method to design and specify the global
architecture of a software system comprising of interconnected modules, and the latter
a way to express and implement modules in a programming language. In a general-
purpose programming language—and depending on the programming paradigm—a
module thus can be viewed as a container artifact that consists of basic building blocks
such as functions, variables, abstract data types, classes and their methods, class hier-
archies and interfaces, and other concepts.

On the other hand, formal languages aiding Programming-in-the-Large to describe
a complete software system as a portfolio of modules is less common. While well-
established imperative programming languages such as C, C++, C#, or Java (below
version 9) only have the means to specify individual modules in their core language,
functional languages usually do have more versatile module systems built-in that al-
low to describe the connections between modules. This may be explained by the formal
nature of functional programming, which makes it easier to clearly separate function-
ality and reason about individual components. This should come as no real surprise, as
it is more natural to provide the formal means for modular programming in program-
ming languages rooted in the lambda calculus, a formal system in mathematical logic.
Working groups currently take remedial actions and specify standards and proposals
for module systems in C++ (see Reis et al., 2016, which may be incorporated in the next
C++20 standard) and the recent release of the Java 9 platform (Parlog, 2018; Reinhold,
2015,|2016), owing to the great demand for formal module systems in those imperative

12
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languages. Before Java 9, the OSGi Alliance defined a module system on top of the
Java core language (OSGi Alliance, 2014), which uses bundles as modular entities.

Before we take a look on the situation of modular programming in logic-based pro-
gramming languages, we will next show how we can specify and interconnect modules
in imperative and functional programming languages.

1.1.2 An lllustrative Example

We will now provide our running example that will be used throughout this thesis
to illustrate modularity concepts, in particular the most general use of modules, i.e.,
modules that mutually refer to each other. As written in the C++ Standardization
Committee technical report A Module System for C++ (Revision 4):

However, classes—and in general, most abstraction facilities—in real world
programs don’t necessarily maintain acyclic use relationship. When that
happens, the cycle is typically “broken” by a forward declaration usually
contained in one of the (sub)components. In a module world that situation
needs scrutiny. (Reis et al. (2016))

For this purpose, we take the EVEN property of integers (or parity) as a well-known
example in the literature to illustrate mutual recursion. A recursive definition for the
set of even (respectively, odd) natural numbers is as follows. Given a natural number
n, we define

1. n = 0is even;
2. nis even, if its predecessor n — 1 is odd; and
3. nis odd if its predecessor n — 1 is even.

In the following, we will implement this property in various programming lan-
guages and paradigms, showing the use of modules and module systems.

1.1.3 Even in Imperative Languages

The C programming language (Kernighan and Ritchie, 1996) is the prime example for
imperative programming and also one of the most wide-spread programming lan-
guages currently in use. The current C and C++ standards do not specify a formal
way to express modules as first-class citizens, in fact, they do not have a module sys-
tem built into their core language (see Reis et al., 2016, for the current working draft
of a C++ module system). We therefore identify C modules as C functions that can be
called from other C functions.

13
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/* forward declarations */
bool is_odd(int);
bool is_even(int);

bool is_odd(int N) {
if (N == 0) return false;
return is _even(N - 1);

}

bool is_even(int N) {
if (N == 0) return true;
return is_odd(N - 1);

}

Listing 1.4: EVEN in C

In order to implement the EVEN property with mutual recursion, one can define
two functions is_odd and is_even that take an integer as input and return bool as
presented in[Listing 1.4] Note that the first two statements are necessary to declare the
functions is_odd(int) and functions is_even(int) before their first application. This
is due to the mutual usage in both functions, and allows to “break” the cycle between
them (see also the quotation above from Reis et al. (2016)).

Now take, as an example, the integer 42. In order to check whether 42 is an even
number, we call is_even(42), which in turn calls is_odd(41). Then, is_even(40) will
be called and this continues as before until we eventually reach the last call is_even
(0) in this chain of mutually recursive calls, which will give us true. Thus, we get
a sequence of alternating parities is_odd(1), is_even(2), ..., is_odd(41), and finally
is_even(42), which all return true. This will also give us the final result that the
integer 42 is indeed an even number.

Note that above evaluation strategy will not work for large integers N. Every invo-
cation of is_odd(int) and is_even(int) in our call chain creates a fresh stack frame
in the call stack, which for large N grows out of proportion. Thus, we will be unlucky
and get a stack overflow when evaluating those functions for values of N larger than
roughly 300000 on modern hardware, thus the program will crash with a segmentation
fault. On closer inspection of [Listing 1.4] we can realize that is_odd(int) and is_even
(int) are tail-recursive functions, i.e., their final step is a function call that leads to
a call in the call chain that will call itself again. Modern C compilers implement an
optimization technique called tail-call elimination, which removes the need to adding
a new stack frame to the call stack for every invocation of tail-recursive functions.
For instance, C compilers such as GCC (https://gcc.gnu.org/) and Clang (https://
clang.llvm.org/) accept the command-line options -0 -foptimize-sibling-calls
that turn on this particular optimization, and the compiled program will then be able
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1.1.3. Even in Imperative Languages

template<int N>
struct Even {
static const bool is_even;

b

template<int N>
struct 0dd {
static const bool is_odd;

b

template <>
const bool Even<0>::is_even = true;

template <>
const bool 0dd<0>::is_odd = false;

template<int N>
const bool 0dd<N>::is_odd = Even<N - 1>::is_even;

template<int N>
const bool Even<N>::is_even = 0dd<N - 1>::is_odd;

Listing 1.5: EVEN in C++

to evaluate the full range of integers.

Of course, implementing EVEN through mutual recursion serves here only to illus-
trate the concept. The classical way to check whether an integer N is even uses modular
arithmetic modulo 2: the simple closed-form expression

N % 2 (11)

in the C programming language evaluates to 0 if and only if N is even. Alternatively,
one can check whether the least-significant bit of an integer is set, and in this case that
integer is odd. These constant time procedures are clearly favorable to evaluating a
recursive procedure. But in contrast to (L.I), the mutually recursive strategy outlined
above in the first paragraph is a more natural way to express the EVEN problem.

A further instance of the imperative programming paradigm is the C++ program-
ming language (Stroustrup, |2013), an object-oriented variant of C that has support for
various concepts to split functionality into components. Reis et al. (2016) note that
the current C++ standard lacks direct language support for modules. Nevertheless, we
may identify language constructs that help programmers to componentize their source
code. Some of these constructs support compile-time modularity, i.e., “modules” will
be instantiated at the compilation step of the program build process, and some of these
concepts come into play when the built program is executed. The concept of template
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-module(odd).
-export([is_odd/11).

is_odd(N) when N > 0 ->
even:is_even(N - 1);

is_odd(0) ->
false.
Listing 1.6: EVEN in Erlang (odd.erl)
-module(even).

-export([is_even/1]).

is_even(N) when N > 0 ->
odd:is_odd(N - 1);

is_even(0) ->
true.

Listing 1.7: EVEN in Erlang (even.erl)

meta-programming (Alexandrescu, 2001) clearly belongs to the former class of struc-
turing functionality into modules, and has been in widespread use in other program-
ming languages as well.

In the following example given by the C++ program in [Listing 1.5] we take a closer
look into template meta-programming and exemplify modularity concepts of C++.
Listing 1.5 rephrases our mutually recursive C program from above and
computes the property of integers being even or odd at compile-time.

Now, when we want to know whether the integer 42 is an even number, we can
instantiate the templates with parameter N set to 42 and access the Boolean member
Even<42>::is_even, which will immediately evaluate to the constant value true when
we run our program; when compiling our program, the C++ compiler will evaluate the
mutual recursion for us and generate an instantiated template along with the constant
member. Note that for large integer template parameters N, we will not be able to
compile The C++11 standard limits the depth of template class instantiation
to 1024, hence for template parameters N larger than 1024 we will not be able to compile
the program.

1.1.4 Even in Functional Languages

Virtually all languages that belong to the functional programming paradigm have a
module system built-in, but only some of these languages support cyclic dependencies
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-module(odd, [N]).
-export([is_odd/0]).

is_odd() when N > 0 ->
EvenMod = even:new(N - 1),
EvenMod:is_even();

is_odd() when N =:= 0 ->
false.

Listing 1.8: EVEN in Erlang with Parameterized Modules (odd.erl)

-module(even, [N]).
-export([is_even/0]).

is_even() when N > 0 ->
0ddMod = odd:new(N - 1),
OddMod:is_odd();

is _even() when N =:= 0 ->
true.

Listing 1.9: EVEN in Erlang with Parameterized Modules (even.erl)

between modules. Other languages theoretically allow dependencies, but you must
specify directives that tell the compiler how to break cycles between modules.

One member of this branch of programming languages with module system that
supports cyclic dependencies is Erlang (Armstrong, 2003, 2007). We will now recast
our running example written in imperative languages above in the functional pro-
gramming language Erlang. This time, albeit not necessary, we use two modules to
emphasize mutual recursion over two modules in Listings|1.6| and [1.7]

The two listings above form essentially the same procedure as our C program from
but this time using two modules odd and even to group related functionality
in a named context. The evaluation will proceed similarly to the C version of the
program.

Note that both functions odd:is_odd/1 and even:is_even/1 are tail-recursive, and
since recursion is omnipresent in functional programming language, we can rely on
tail-call elimination being always applied during program compilation, which in turn
prevents the unlimited growth of the call stack during execution.

Parameterized Erlang modules (R. Carlsson, 2003) are an Erlang extension that is
suitable for writing concise functional modules. We make use of this extension next
in Listings [1.8| and [1.9] by adapting the respective Erlang modules from Listings
and[l.7]and parameterize both modules with an input parameter N, which shares some
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similarity to the C++ template meta-programming example from

The argument N to functions even:is_even/1 and odd:is_odd/1 from Listings
and [1.7) have been shifted into parameter N for the modules even, [N] and odd, [N].
The functions even:is_even/0 and odd:is_odd/0 from Listingsandnow do not
take arguments anymore. Instead of directly taking the integer N as input argument
to compute the even and the odd property, both functions use parameter N from their
respective module parameter even, [N] and odd, [N], and make even:is_even/0 and
odd:1is_odd/0 applicable based on the evaluation of the function guards when N > 0
and when N =:= 0 (note that Erlang uses =:= to test for equality).

During program evaluation, odd:is_odd/0 and even:is_even/0 both explicitly in-
stantiate a new module even, [N-1] and odd, [N-11], respectively, using the module
constructors even:new(N-1) and odd:new(N-1). When binding the new modules to
variables EvenMod and OddMod, they call even:is_even/0 respectively odd:is_odd/0
on that fresh instance, and use the return value as result.

If we take N to be 42 again, we can start the mutual recursion by calling M =
even:new(42), M:is_even(), which in turn invokes even:is_even/0 respectively odd
:is_odd/0 along a chain of instantiated modules even, [42], odd, [41], ..., odd, [1],
even, [0]. Again, the computation yields true, as expected.

Parameterizing modules have a long tradition in functional programming, and in
fact, this model for modularization is prevalent. For example, such an abstraction
mechanism is used in the following functional programming languages: in the R lan-
guage through parameterized modules (Warnholz, 2017), and in ML (Milner et al., 1997),
Objective Caml (Leroy et al., 2017), and Haskell (Shields and Jones, 2002) through the
use of functors. Building on this idea seems to be a useful abstraction for modularity
in answer set programming, but before we delve into this realm, we first provide a
historic account on modular logic programming.

1.2 Modularity in Logic Programming

There is a long history of research in investigating modularity principles in logic pro-
gramming. A good overview is provided by Brogi et al. (1994) and Bugliesi et al. (1994),
which study modularity in the context of traditional definite Horn logic programming.
In spirit of DeRemer and Kron (1975), the articles by Brogi et al. (1994) and Bugliesi et al.
(1994) identify two directions for investigating modularity aspects in logic program-
ming:

« Programming-in-the-Large, which introduces compositional operators to com-
bine separate and independent modules; and

« Programming-in-the-Small, which builds upon abstraction and scoping mecha-
nisms.
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Early influential work on modularity in logic programming include Fitting (1987)
and Gaifman and Shapiro (1989), where the former can be seen as an approach for
Programming-in-the-Small, while the latter is a prototypical instance of Programming-
in-the-Large.

For the Prolog programming language, there is a number of working implementa-
tions with module systems that allow to write Prolog programs with modules. The ISO
Prolog standard (ISO-Prolog, [2000) standardizes the ISO-Prolog module system. Imple-
mentations of the Prolog like Ciao Prolog (Cabeza and Hermenegildo, 2000), SICStus
Prolog (M. Carlsson and Mildner, |2012), SWI-Prolog (Wielemaker et al.,2012), or XSB
Prolog (Swift and Warren, |2012) have a module system as part of their core language.

In contrast to the examples in shown above, it is customary to view answer
set programs as monolithic entities, i.e., one program is tailored to solve a particular
problem without a clear separation of the subtasks, albeit the same principle of creat-
ing manageable pieces of knowledge will help users of ASP systems building knowl-
edge bases. Having an explicit way to modularize knowledge in logic programs is
thus needed and adding modularity principles to ASP has several advantages like easy
knowledge base reuse by clean input/output interfaces and helping to model complex
problem domains by focusing on smaller parts first. This issue has been identified and
various notions for modularizing logic programs have been proposed to support test-
ing logic programs, reusing and abstracting components, and maintaining program
code.

However, there are obstacles that impede to bring such characteristics to ASP. Tra-
ditional answer set semantics has no module concept and there is no straightforward
way that would allow that. It is not clear how a semantics should be defined that
caters for modules, as the declarative nature of ASP does not distinguish between
knowledge stored in different logic programs (when viewed as modules). Another
issue is to allow for cyclic module systems, i.e., when modules mutually refer to each
other. Modules that have such cyclic dependencies may bring in semantic issues like
unfounded models that would not be present when viewing logic programs as single
units. Both of these problems are related to the declarative nature of ASP, and any
prospective model-theoretic semantics for modular ASP has to deal with unwanted
semantic deficits. Methods that bring modularity aspects closer to ASP have not yet
stood the test of time, and no single semantics has gained general acceptance.

Thus, there has been an increasing interest in studying modularity aspects of An-
swer Set Programming in the recent years, in order to ease the composition of program
parts to an overall program. Since the early days of Datalog (Gottlob et al.,[1989), mod-
ularity aspects have been recognized as an important issue, and already the seminal
notion of stratification (Apt et al.,[1988) builds on an evaluation of subprograms in an
ordered way. This has been later largely elaborated to notions like modular stratifi-
cation (Ross, [1994) and XY-stratification incorporated in the LD L++ system (Arni et
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al.,2003), and has been generalized to a syntactic notions of modularity for disjunctive
Datalog programs (Eiter et al., 1994, [1997alc) that, in the context of nonmonotonic logic
programming, has been independently found as Splitting Sets (Lifschitz and Turner,
1994), which generalize stratification and proved to be a useful tool to decompose pro-
grams.

However, compared to the study of modularity in logic programming (Brogi et
al., 1994; Bugliesi et al., 1994) (see Eiter et al. (1997b) for a historic account), work on
modular ASP is still less developed. In the context of answer set semantics, whose focus
lies in the treatment of negation-as-failure and disjunctive rules, several important
proposals have been put forward.

Representatives of Programming-in-the-Large provide compositional operators for
combining separate and independent modules based on standard semantics. This direc-
tion for modular logic programming has been followed in DLP-functions (Janhunen et
al.,2009b) and modular sMODELSs programs (Oikarinen and Janhunen, |2008), which fo-
cus on logic programs with Gaifman-Shapiro-style module architecture (Gaifman and
Shapiro, [1989). Additional work generalizes their approach to a module-based frame-
work for multi-language constraint modeling (Jarvisalo et al.,2009) and to modular P-
log programs that combines probabilistic reasoning with logic programs (Damasio and
Moura, 2011). Recently, (Oikarinen and Janhunen, [2008) has been extended to lift syn-
tactic restrictions on the dependencies between modules (Moura and Damaésio, 2014}
2015), which allows to express positive cycles between modules by introducing fresh
modules and rewriting output atoms. The work on abstract modular systems (Lierler
and Truszczynski, 2016) studies general modular knowledge representation systems.
Another proponent (Vennekens et al.,2006) is concerned with operator splitting simi-
lar in the vein of splitting sets (Lifschitz and Turner, [1994).

Programming-in-the-Small aims at enhancing ASP with abstraction and scoping
mechanisms similar as in other programming paradigms. This direction has been
widely considered, and modular extensions of answer set programs based on gener-
alized quantifiers (Eiter et al., 1997b), macros (Baral et al.,2006), templates (Calimeri
and Ianni, [2006), and for web rule bases (Analyti et al., 2011) have been proposed. On
a broader scale, multi-agent scenarios with logic programs have been studied in social
logic programs (Buccafurri and Caminiti, [2008) and communicating ASP (Bauters et
al., [2011).

The two directions Programming-in-the-Large and Programming-in-the-Small are
quite divergent, as Programming-in-the-Large requires to introduce new operators in
the language. However the above concepts do not cater a module concept as famil-
iar in conventional imperative and object-oriented languages, where procedures come
with parameters that are passed on during the evaluation. To provide support for this,
Eiter et al. (1997b) developed Modular ASP Programs, which are an early attempt to
narrow the gap between imperative and declarative languages a bit. Such modular
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1.2. Modularity in Logic Programming

(a) Imperative Programming (C-style) (b) Functional Programming (Erlang-style)
« Declaration: « Declaration:
int fun(int, int); -spec fun(integer(),integer())

-> integer().

« Definition:

int fun(int x, int y) {  Definition:

return [...]; fun(X,Y) -> [...1.
}
o Use:
» Use: Z = fun(1,2).

int z = fun(1,2);

(c) Modular Nonmonotonic Logic Programming

« Declaration:

m = (fun|p,ql,R)

— fun is a module name
- D, q are predicate names

— Ris a set of rules

o Definition:

R ={o(X) < p(X),q(X,Y),--; ...}

o Use:
Z(X) « fun|r,s].o(X)

Figure 1.5: Modular Structuring in three Programming Language Paradigms

logic programs are based on an extension of logic programs with genuine generalized
quantifiers, where modules can receive parametric input that is passed on in a call by
value mode, in addition to the usual call by reference access to atoms in other mod-
ules. Strachey (2000) defines these two parameter calling modes as follows: a function
which receives a parameter in call by value mode will receive the content (value) of
a memory area as formal parameter, whereas a function with call by reference mode
will receive the location of an area in memory as formal parameter; e.g., in C++, we
may define a function int f(int& x) that takes a formal parameter x by reference,
and calling f(y) allows f to change the content of y.

shows three functions expressed in different programming paradigms,
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but all have in common that they receive their parameters in call by value mode. Fig-
ures and shows how to define, declare, and use call functions in C and Er-
lang, respectively. Both are essentially identical with only minor syntactic differences:
the outcome of a function call fun(1,2) will be assigned to a variable z, where fun
receives the values 1,2 as x,y in its function definition. shows the mod-
ule of a Modular ASP program in comparison. Here, the formal input parameters p
and g for module fun will be given the extension of the predicates r and s in the rule
Z(X) < fun|r,s].o(X), where r and s will be computed outside the context of fun. This
gives rise to module instantiation for different values of p and q that are in spirit of
the parameterized Erlang module example shown in Listings 1.8/ and [1.9| and the C++
template meta-programming example in [Listing 1.5]

General quantifiers are used as a tool to access a module P; from another module P;
using module atoms of the form P;[p].q(X) (in slightly different syntax), where p is a
list of predicates and q is a predicate; intuitively, the module atom evaluates to true for
X if, on input of the values of the predicates in p to the module P;, the atom g(X) will
be concluded by P; (under skeptical semantics). For a system P;[q,], ..., P,[q,] of such
modules, where each q; is a (list of) formal input predicates, answer sets have been de-
fined using a generalization of the Gelfond-Lifschitz reduct. The resulting framework
is quite expressive, as it is EXPSPACE-complete in general.

But there are limitations and shortcomings in the seminal approach by Eiter et al.
(1997b). As for the former, an important restriction adopted by Eiter et al. (1997b) is
that calls of modules must be acyclic; that is, following the call chain, one may not re-
turn to a call of the same module. In fact, this condition was already imposed at the
syntactic level and prohibits the use of recursion, which is a common and natural pro-
gramming technique. Because of technical intricacies, also some other approaches to
modular answer set programming have limited recursive module calls. Most promi-
nently, DLP-functions (Janhunen et al., 2009b), which are disjunctive logic programs
with a well-defined input/output interface, exclude recursive calls that involve positive
recursion. The approach of Moura and Damasio (2014, 2015) shows how to allow posi-
tive recursion over modules as specified in the framework of Oikarinen and Janhunen
(2008) by using rewriting techniques for mutual recursive modules and adding fresh
modules, but there is no support for disjunctive logic programs. For more discussion,
we refer to Chapter [11]

Furthermore, Eiter et al. (1997b) based their semantics on the Gelfond-Lifschitz
reduct, which suffers from similar anomalies as answer sets for other extensions of
logic programs defined in this way. And finally, it was more concerned with defining
local models of a single module, by importing conclusions of other modules (where
for a given input the “output” of a module is unique) rather than giving a model-based
semantics to a collection Py, ..., P,, of modules, in which for the same input alternative
outputs of a module are possible.
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1.2.1. Even in Nonmonotonic Logic Programming

As we will see, the restrictions for modular logic programs (Eiter et al., 1997b) will
be lifted in this thesis, with its contributions listed in Next, we will look into the
EVEN property again and try to model it using an answer set program.

1.2.1 Even in Nonmonotonic Logic Programming

In logic programming with an ordinary ASP realization, assuming data types are avail-
able and, in particular, the predecessor n — 1, the EVEN property is easily expressed
with recursive rules

even(N) < odd(N — 1)
odd(N) « even(N — 1)

even(0) «

However, if no such predecessor is available, the task is more complicated. For ex-
ample, if n is given as the cardinality of a set of elements, stored in a predicate g;
i.e., we need to tell whether the set of facts over g has even cardinality. This problem
is known as the EVEN-query in databases and has been studied intensively. In fact,
it is well-known that this problem cannot be expressed in Datalog, and furthermore,
even not without the use of a binary predicate (Chandra and Harel, 1982). This follows
from Blass et al. (1986), which shows that logics with fixed-point operators like Datalog
have the 0-1 Law (Fagin, 1976; Glebskii et al., [1969). The same is true for ASP under
stable model semantics, where we have negation as failure, see [Proposition 3.1}

A common solution to this problem is, in order to realize the recursion scheme
above, to guess an binary predecessor predicate pred(x,y) over the elements in g that
amounts to x = y — 1. This works well for smaller sets, but suffers scalability problems
as building the successor predicate is expensive (see also Abiteboul and Vianu, (1991,
for the mismatch between the complexity of database computation and conventional
Turing complexity).

If we can order the domain linearly, and provide this information together with the
minimal and maximal elements, i.e., when the relations pred/2, first/1, and last/1 are
stored in the extensional database, we may express the query with

even(Y) « pred(X,Y), odd(X)
0dd(Y) « pred(X,Y), even(X)
0dd(X) « first(X)

w « last(X), even(X)

such that w is true whenever the domain contains an even number of elements.
Modular logic programming offers an alternative to express the EVEN query in a
fashion that avoids to build a successor predicate, and retains the simple structure of
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the program above. All we need to do is to determine the predecessor of n (which is
given by q) in a predicate ¢’ and then make a recursive call for q’. To this end, it is
sufficient to drop some arbitrary element from q and let q’ be the result. Dropping an
element from g can be easily expressed by nondeterministic choice rules in ASP. In
our formalism, this would lead to the following module, which shares some familiarity
to parametric modules in functional programming.

Example 1.1 (Even query) Consider the following module Parity[q/1], which con-
sists of four rules that determine whether a set has an even respectively odd number
of elements:

qX)Vq'Y) < qX),q¥),X#Y
skip « g(X),not q'(X)
odd « skip, Parity[q'].even

even < not odd

Here, q/1 is a (formal) unary input predicate that stores the set. The first two rules
have the effect, by the minimality of answer sets, that ¢ becomes q’ with one element
arbitrarily removed (for which skip is true, as defined in the second rule). Do if q repre-
sents n, then g’ represents n—1. The third rule determines recursively whether g stores
an odd number of elements using the module atom Parity[q'].even, while the last rule
defines even as the complement of odd. Intuitively, if we call the module Parity with a
predicate p for input, then even is computed true, which is expressed by Parity|p].even,
whenever p stores an even number of elements.

Intuitively, if we call Parity with a predicate p for input, then even is computed
true (which is expressed by Parity[p].even), if p stores an even number of elements.
Note that Parity is recursive, and for empty input p it calls itself with the same input.

As a matter of fact, the program module above does not use a binary predicate; only
a guess of a unary predicate (for removing an element) is needed. In sense, the modular
ASP encoding builds a predecessor predicate locally on the fly, while an ordinary ASP
encoding builds it with a global guess, which should be less efficient. This intuition is
in fact confirmed by experimental results (see Chapter 3).

Roughly, an MLP is a system P = (my,..., m,) of modules, where each module
m; = (Pilq;],R;) has a module name P; with an associated list q; of formal input
atoms, and an associated set of rules R; (the “implementation”). A module m; can
access another module m; using module atoms in the body of rules in R; of the form
Pj[p].o. Intuitively, the module atom evaluates to true if, on input of the atoms in p
to the module Pj, the atom o will be true in P;. Such programs allow unrestricted
cyclic calls between modules; they can be seen as a generalization of DLP-functions
from propositional to Datalog programs that allow for positive cyclic calls between
modules (including recursion), and provide a call by value mechanism.
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Example 1.2 (Even MLP) For example, the following MLP P = (m,, m,, m3) re-
cursively checks whether the number of facts over predicate g in the main module
m; = (P1[q1], Ry) is even. Note that m; has no input (i.e., q; is empty) and uses the

rules
q(a) «
R, =1 qb) « )
ok <« P,[q].even

as implementation. Intuitively, m; calls m, with a rule for the check, and assigns the
result to ok. The module m, = (P,[q,],R,) is mutual recursive with module m; =
(P3[q3], R3). They have the formal inputs q, = g, and q3 = g3, respectively, and the
implementations

qé(X) « qZ(X)a Q2(Y), not qé(Y)’X # Y
R = skip, <« @,(X),not g5(X)
2 even <« not skip,
even <« skip,, P3[q,].0odd
and
X)) < q3(X),q3(Y),notg3(Y), X #Y
Ry =1 skips « q3(X),notq;(X)

odd <« skips, P,[q3].even

A call to m, “returns” even, if either the input g, to m, is empty (as then skip, is
false), or the call of m5; with g} resulting from g, by arbitrarily removing one element
(then skip, is true) returns odd. Module mj returns odd for input g3, if a call to m,
with g5 analogously constructed from g; returns even. In any answer set of P, ok is
true.

1.3 Goals

As described above, several semantics exist that deal with modularity in ASP. Virtually
all semantics are defined such that mutual recursion between modules is disallowed.
While this helps one to simplify the definitions of a semantics for modular ASP, in
general this may bring issues when different, possibly independently developed mod-
ules are combined. Many natural problems exist that have an inherent cyclic flavor,
and ruling out the chance to model problems using modules that depend on each other
may be too restrictive in practice, or even force to use counter-intuitive encodings. We
aim at defining a model-theoretic semantics that caters for this situation, investigate its
semantic properties and computational complexity, and develop novel evaluation algo-
rithms for such modular nonmonotonic logic programs. The next example illustrates

25



Chapter 1. Introduction

!/

Oq
Parity[{q(2)}]

Parity[{q(1), q(2)}]
Parity[q/1] p 1

Figure 1.6: Call graph of instantiated modules in

cycles in modular logic programming using Modular Nonmonotonic Logic Programs
(MLP) as defined in Chapter 3| a formalism that admits arbitrary nonground disjunc-
tive nonmonotonic logic programs as modules. MLPs can be seen as a proponent of
the Programming-in-the-Small approach to modular programming, as it is using mod-
ule atoms as a language construct to access knowledge encoded in other modules. We
sketch the basic building blocks of MLPs and refer to Chapter [3|/for proper formal def-
initions.

Example 1.3 We demonstrate the use of Parity from[Example 1.1in an MLP with the
(main) module P[] with empty input, which calls Parity with a set p of two elements:

p(1) « p(2) « pev < Parity[p].even

The combination of both modules gives the cyclic MLP P = (P[], Parity[q/1]). On the
surface, P can be seen as an “uninstantiated” modular program, whose semantics is
given by characterizing models at modules which have been instantiated with a set of
input facts: the value calls. depicts the call graph (the principle dependen-
cies) of P with value calls as nodes and edges labeled with input predicates; e.g., value
call P[@] calls Parity[{q(1), q(2)}] on input p. The dotted boxes highlight the modules
from which the value calls on the inside have been generated.

Loosely speaking, MLPs encode schematic dependencies between modules, and
instantiated modules then can be used to define a semantics that takes module input
into account which is defined over possibly cyclic modules. Different interpretations of
an MLP select different subgraphs of its call graph, and answer sets are defined based on
the selected subgraphs. For instance, P has two answer sets in which pev is true at the
main instantiation P[@] and even is true at Parity[{q(1), q(2)}] and Parity| @], whereas
odd is satisfied at Parity[{q(1)}] and Parity[{q(2)}]. Both answer sets are symmetric
on the guess of q" at Parity[{q(1), g(2)}], but otherwise equal.
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1.4 Methods

We have an advanced understanding of unexpected issues that arise when we allow
for module cycles in MLPs. One key aspect is the use of the FLP-reduct (Faber et al.,
2011) instead of the traditional GL-reduct (Gelfond and Lifschitz, [1991) to cure seman-
tic issues when dealing with negation-as-failure over potential nonmonotonic module
atoms. Roughly, given an interpretation of a program, the GL-reduct first removes each
rule whose negative body is false in the interpretation, and then cut offs the negative
literals from remaining rules. On the other hand, the FLP-reduct just removes rules
whose body is unsatisfied in a given interpretation, which leaves negative literals in
the result of this transformation. Applied to traditional answer set programs, both
reducts are equivalent, but FLP-semantics is beneficial for language extensions of ASP
such as logic programs with aggregates. In the context of MLPs, the FLP-semantics
guarantees that models are minimal, thus we retain groundedness of the semantics
and prohibit unfounded answer sets.

Another aspect of MLP is to contextualize module instantiation. Here, relevant in-
stantiations are a concept to concentrate on the important part of all instantiated mod-
ules. In general, module instantiation plays a key role for the definition of a semantics
for MLPs. Akin to the argument-passing semantics of imperative programming lan-
guages, the module instantiation employed in MLPs can be viewed as call by value
mechanism, where module instantiations call other instantiations with explicit input
facts, thus formal input arguments of modules cannot be changed after instantiation.

In the module framework of DLP-functions (Janhunen et al., |2009b), which can
be classified as call by reference mechanism, input is given implicitly by the models
of individual module, and composed modules may refer to input atoms as alias for
atoms in the model. Here, the truth value of atoms are instantiated through the com-
posed programs by a given model. To draw an analogy to the individual stages of
ASP, MLPs instantiate modules by “grounding” and keep the instantiations fixed, while
DLP-functions instantiate modules during model search.

Further results show that MLPs have an increase in computational complexity com-
pared to standard ASP: propositional Horn-MLPs with unrestricted cyclic input over
modules are EXP-complete, and nonground ones are 2EXP-complete. If we restrict
propositional MLPs such that modules have no input predicates, we obtain for instance
that checking satisfiability of normal propositional MLPs is NP-complete, and for dis-
junctive MLP it is %5 -complete. In general, checking answer set existence of arbitrary
normal nonground MLPs is 2NEXP-complete, and 2NEXPNF-complete for the disjunc-
tive case.
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1.5 Contributions

Concerning semantics, the use of the Gelfond-Lifschitz reduct effected that local mod-
els were in the spirit of Nash equilibria, viz., that a model is (locally) stable if as-
suming that all modules behave in the same way there is no need for the local pro-
gram to switch to another model. Specifically, a program P; consisting of the clause
q < P,[q].p, where the module P,[q,] consists of the single clause p « g,, has two
answer sets, viz., @ and {q}. The reason is that g can be concluded in a self-stabilizing
way from the call P,[q].p; however, arguably @& may be considered as the single an-
swer set of P;.

Such behavior can be excluded using alternative reducts, like the Faber-Leone-
Pfeifer (FLP) reduct (Faber et al.,2011), which has been proposed in the context of ASP
with aggregates to ensure that answer sets are minimal models (see for
the technical details). This reduct formed also the basis for defining the semantics
of HEX-programs (Eiter et al., 2012a, 2006b), which generalized the semantics of logic
programs with generalized quantifiers to the HiLog setting; however, the setting has
been module-centric like (Eiter et al.,[1997b)), and no global semantics for a collection of
modules is evident. MLPs overcome a restriction of a preliminary approach by Eiter et
al. (1997b), in which module calls must be acyclic (which prohibits the use of recursion
through modules), as well as anomalies of the semantics due to the Gelfond-Lifschitz
reduct, which is replaced by the FLP reduct.

Motivated by these shortcomings, we reconsider modular ASP and make the fol-
lowing main contributions.

We define a model theoretic semantics of a system P,[q,], ..., P,,[q;,] of program mod-
ules, which are divided into one or multiple main modules P; that have no input (i.e.,
q; is void), and library modules which may have input (i.e., q; can be void). Informally,
the semantics assigns an answer set to each main module and module instance that is
called by the program under a call by value mechanism (Eiter et al.,[1997b); the answer
set must be reproducible from the rules along its recursive computation.

Example 1.4 (cont’d) In above, an answer set for the module instance
of Parity[q], whose input q stores S = {cy, ..., ¢y}, would have q" storing, for some
permutation 7 of {1, ..., n}, the set S; = S \ {c;(1)} and call the instance of Parity[q]
with g storing S;, whose answer set in turn stores S, = S1 \ {cz(2)} = S \ {cr(1), Cr(2)}
in @', etc. The value of even and odd in the answer sets of the instances is determined
bottom up from the ground: for the instance of Parity|q| where ¢ = @, q' and skip
are void, and thus odd must be necessarily false; hence, even is true. On the way back,
even and odd are complemented with their values at the next recursion level.

While a naive definition of the semantics is straightforward, a more difficult question
is to delineate the relevant instances of modules for the computation. Intuitively, many

28



1.5. Contributions

(instances of) modules P;[q;] in a library might be completely irrelevant for determin-
ing the semantics of a particular collection of modules, but prevent the existence of a
global semantics if locally, for some input value of q;, the instance has no answer set.

Example 1.5 (cont’d) Suppose in the module Parity in there would also
be a fact r(a) and a rule ok < P’[r].nonempty where the module P’[q/1] consists of
the rules nonempty < not nonempty and nonempty < q(X). Then, an instance P’ has
an answer set precisely if its input is not empty. Thus, the call P’'[r].nonempty in the
rule will always lead to an answer set in which nonempty is true, and hence we expect
an answer set for the instance of Parity with input S. However, as P’ has for empty
input no answer set, there is no global answer set; intuitively, the instance of P’ with
empty input is irrelevant, and may be discarded.

To remedy this situation and to keep the semantics simple, we use here minimal mod-
els as an approximation of answer sets in module instances that are outside of a context
(i.e., a scope), in which stability of models is strictly required. This context contains al-
ways at least the module instances along the call graph of the program and optionally
further instances to increase in a sense the degree of stability. The smaller the con-
text, the more permissive is the semantics. An alternative to using minimal models for
ensuring consistency would, e.g., be to use paracoherent answer set semantics (Amen-
dola et al.,[2016; Sakama and Inoue, 1995); however the latter has higher computational
complexity than ordinary answer set semantics.

We analyze semantic properties of the approach, and show that many of the desired
properties of ordinary logic programs generalize to our modular ASP. This includes
that the answer sets of a positive modular ASP are its minimal models; that Horn pro-
grams have a model intersection property, and thus a least model, which can be com-
puted by least fixpoint iteration; that the latter can be extended to stratified programs,
which have a canonical model modulo the relevant part.

We characterize the computational complexity of the new formalism. Our modu-
lar ASP programs have the same complexity as ordinary ASP programs if the mod-
ules have no input, i.e., deciding answer set existence is Z5-complete in the propo-
sitional case and NEXPNF-complete in the nonground (Datalog) case. For programs
with arbitrary inputs, the complexity is exponentially higher, viz., NEXPN'-complete
and 2NEXPNP-complete, respectively. Consequently, our formalism is (under common
complexity hypothesis) more expressive than modular logic programs by Eiter et al.
(1997b); the latter have EXPSPACE complexity, and EXPSPACE is believed to be strictly
contained in 2NEXPN?. The picture is analogous for deciding membership of an atom
in the least model of a Horn program, which is P-complete for MLPs without input
(respectively, EXP-complete for nonground programs), and EXP-complete for MLPs
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with arbitrary input (respectively, 2EXP-complete in the Datalog setting). However, if
the inputs are naturally bounded, then the complexity is the same as in the case with-
out inputs, and thus as in ordinary ASP. We further investigate normal MLPs, both
unrestricted and those which are acyclic with respect to their call graph, and show
that in either case deciding whether normal or acyclic MLPs have an answer set is
NEXP-complete.

We provide two rewriting techniques for translating MLPs with module input into
programs of simpler structure. The first one rewrites arbitrary MLPs to MLPs without
module input, which may be transformed into logic programs without modules at all.
This approach is costly in general and may generate exponentially larger programs.
The second approach converts restricted MLPs to programs without modules, which
will be applied to transfer Datalog-rewritable DL-programs (Heymans et al., 2010) to
MLPs.

We report a top-down evaluation procedure that expands only relevant module instan-
tiations based on novel notions of input- and call-stratified MLPs, for which Splitting
Set Theorem (Lifschitz and Turner, 1994) has been extended.

We characterize the answer sets of MLPs in terms of classical models and explore the
notion of loop formulas (Lin and Zhao,|2004) and completion (Clark, 1978)) for MLPs. We
further the work and study ordered completion exploring the recent approach of Asun-
cion et al. (2012).

We analyze the relationship between our modular answer set programs and DLP-
functions (Janhunen et al., [2009b), which are one of the premier formalisms for com-
bining ASP modules. As it turns out, DLP-functions can be very naturally embedded
into our formalism, by regarding DLP modules as MLP modules with empty input list;
vice versa, a respective fragment of our modular ASP programs can be embedded into
DLP functions. As our approach admits mutual recursion of calls with positive loops,
and it furthermore also incorporates a call by value mechanism, it can be viewed as a
generalization of DLP-functions with these features.

We believe that the approach presented in this thesis contributes to modular ASP
in which modules can be used in an unrestricted and natural way for problem solving,
and looping recursion is handled by the very means of logic programming semantics.

1.6 Organization

This thesis is organized into four parts. In Part|l, we started with an introduction into
modular programming and aspects of modularity in logic programming. In the next
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Part I

Part II

Part III H

Part IV

Figure 1.7: Leitfaden

Chapter[2|we give preliminaries for Answer Set Programming and review Generalized
Quantifier Logic Programs.

The following Parts[[IH[V]then elaborate on modular nonmonotonic logic programs
(MLPs), our contribution to modularity in logic programming. In Part[ll, we start by
introducing syntax and semantics of modular nonmonotonic logic programs in Chap-
ter 3 We then study in Chapter [4 semantic properties and consider some important
syntactic fragments of MLPs, before we proceed in Chapter [5] to analyze the computa-
tional complexity of the formalism.

The next Part [Ill] is concerned with characterizing MLPs using other logic for-
malisms. In Chapter [6| we investigate rewriting techniques for MLPs into programs of
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simpler structure, namely into Datalog, which possibly completely removes all mod-
ules and thus potentially allows for easier program evaluation. This paves the way to
show an application for MLPs, namely evaluating hybrid knowledge bases in the form
of dl-programs with Datalog-rewritable description logics. Following this, Chapter
characterizes the semantics of MLPs in terms of classical models by adopting the no-
tion of loop formulas and ordered completion to MLPs. In Chapter |8, we review MLP
splitting sets and a top-down evaluation algorithm for MLPs. Moreover, we report the
findings of an experimental evaluation for a benchmark using MLPs derived by the
rewriting techniques developed for dl-programs in Chapter [6]

The final Part[[Vlexamines related work and concludes this thesis. We first establish
a correspondence of a fragment of MLPs to DLP-functions (Janhunen et al.,|2009b) in
Chapter [9] and then provide further approaches to modular logic programming and
their relationship to MLPs in Chapter [10} Chapter [11| considers potential future work,
addresses possible applications and gives conclusions.

summarizes the conceptual dependencies between the chapters, where
Chapter [11] implicitly depends on all chapters.

1.7 Publications Related with the Thesis

Dao-Tran et al. (2009a)) devise a novel semantics for MLPs that allows for mutual re-
cursion between modules. We have studied the semantic properties of MLPs, their
computational complexity, and compared it to DLP-functions (Janhunen et al., 2009b);
interestingly, DLP-functions can be seen as MLPs that have no module input parame-
ters. MLPs conservatively extend ordinary logic programs, and many semantic prop-
erties of answer set programs generalize to MLPs. For instance, the important property
that every answer set of an MLP is a minimal model implies that answer sets in the
MLP setting are grounded (see discussion above). This thesis builds upon this work
and gives detailed proofs and extends it in Chapters and Chapter[9]

Eiter et al. (2009a) investigate the relationships between various semantics for
modular logic programs and other nonmonotonic formalisms. We have provided a
more systematic view of approaches in combining nonmonotonic knowledge bases
and classified formalisms based on the program reduct and on the environment view,
i.e., whether their semantics is defined in terms of local models for each individual
knowledge base that implicitly converge to a semantics for the combined system, or
whether the formalism has a global state using a collection of explicitly accessible local
models.

We developed a novel evaluation algorithm for MLPs (Dao-Tran et al.,2009b). Here,
we concentrated on an MLP fragment called input- and call-stratified MLPs, whose
stratification can be evaluated in a top-down fashion starting from uninstantiated mod-
ules. This way we could generalize the splitting set technique to MLPs and develop an
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evaluation algorithm that traverses the call graph and instantiates modules on-the-fly.
above is input-call-stratified, and the techniques developed by Dao-Tran
et al. (2009b) are applicable to it. In Chapter (8| we summarize their work there.

Krennwallner (2011) consolidates our work on Modular Nonmonotonic Logic Pro-
grams and pinpoints to issues that are present in cyclic module systems by highlighting
how MLPs addresses them.

We worked on two characterizations of MLPs in terms of classical models by in-
vestigating the notions of loop formulas (Lin and Zhao, 2004) and ordered comple-
tion (Asuncion et al.,2012) in MLPs (Dao-Tran et al., [2011). The results include mod-
ular loop formulas based on loops over module instantiations, and ordered completion
for MLPs without using explicit loop formulas. We generalized Clark’s completion and
positive dependency graph to MLPs with respect to different module instantiations.
Based on these results, we defined modular loop formulas that capture MLP seman-
tics. The second contribution was to explore ordered completion in the realm of MLPs.
Here, fresh predicates ensure a derivation order, and program completion is only ac-
tive for those predicates that do not participate in a positive loop, possibly involving
module instantiations. Chapter [7|extends this work.

Eiter et al. (2012b) consider recent and ongoing work on combining rules and
ontologies systems formalized in logic programming and description logics, respec-
tively. Nonmonotonic description logic programs are a major formalism for a loose
coupling of such combinations; this approach is attractive for combining systems, but
the impedance mismatch between different reasoning engines and the API-style inter-
facing are an obstacle to efficient evaluation of dl-programs in general. Uniform eval-
uation circumvents this by transforming programs into a single formalism, which can
be evaluated on a single reasoning engine. We use relational first-order logic (and thus
relational database engines) and Datalog with negation as target formalisms, conduct-
ing experiments whose results show that significant performance gains are possible
and suggest the potential of this approach.
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Preliminaries and Previous Results

HE OBJECTIVE of this chapter is to describe the formal specifications for two
essential formalisms that provide the basis for this thesis. describes
the background for Answer Set Programs, i.e., disjunctive logic programs
under stable model semantics. Beyond that, describes logic programs

with generalized quantifiers, which provide the theoretical underpinning for gener-
alized quantifier modular logic programs (GQMLP), described in Such GQMLPs
constitute important previous results for modular logic programming in ASP and as
such forms the intellectual predecessor for modular nonmonotonic logic programs.

2.1 Logic Programs under the Answer Set Semantics

Answer Set Programming stems from the stable model semantics of normal logic pro-
grams (Gelfond and Lifschitz, [1988) line of research (also known as general logic pro-
grams), which typically deals with negation as failure. This kind of negation is closely
related to Reiter’s Default Logic (Reiter, [1980), hence it is also known as default nega-
tion or weak negation. Since negation as failure is different from classical negation (or
strong negation) in classical logic, Gelfond and Lifschitz proposed a logic programming
approach that allows for both negations (Gelfond and Lifschitz, [1990). Subsequently,
Gelfond and Lifschitz (1991) extended their semantics to disjunction in rule heads. Sim-
ilar definitions for general logic programs and other classes of programs can be found
in the literature (confer, e.g., (Lifschitz and Woo, [1992))). For an overview on other
semantics for extended logic programs, see also (Dix, 1995).

Prominent systems for computing answer sets of are ASSAT (Lin and Zhao, 2004),
Clasp (Gebser et al., 2011, [2012), Clingo (Gebser et al., [2017), Cmodels (Giunchiglia et
al.,, [2006), DLV (Adrian et al., 2018; Leone et al., 2006), DLV2 (Alviano et al., [2017),
DLVHEX (Eiter et al., 2018, 20064, 2017), GnT (Janhunen et al.,[2006), Lp2* family (Jan-
hunen, [2018), sMoDELs (Niemeld, 1999; Simons et al., 2002), and WASP (Alviano et
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Name restriction

definite Horn k=1, n=m
m

Horn k<l,n=
normal k<1
definite k>1,n=m
positive n=m
disjunctive no restriction

Table 2.1: Program classes

al., 2015a), which allow for efficient declarative problem solving. Some of these an-
swer set solvers require ground input programs, which can be generated by sophis-
ticated grounders like Gringo (Gebser et al., 2014c), J-DLV (Calimeri et al., 2017), or
Lparse (Syrjanen, [2001; Syrjanen, 2009).

2.1.1 Syntax of Answer Set Programs

Let P, € and XX be disjoint sets of predicate, constant, and variable symbols from a
first-order vocabulary @, respectively, where XX is infinite and P and C are countable.
In accordance with common ASP solvers such as DLV, we assume that elements from

C and 2 are string constants that begin with a lowercase letter or are double-quoted,
where elements from C can also be integer numbers. Elements from XX begin with an
uppercase letter. A term is either a constant or a variable. Given p € P an atom is
defined as p(ty, ..., tx), where k is called the arity of p and t,, ..., t; are terms. Atoms
of arity k = 0 are called propositional atoms.

A classical literal (or simply literal) | is an atom p or a negated atom —p, where
’ is the symbol for true (classical) negation. Its complementary literal is —p (respec-
tively, p). A negation as failure literal (or NAF-literal) is a literal [ or a default-negated
literal not I. Negation as failure is an extension to classical negation, denoting a fact as
false if all attempts to prove it fail. Thus, not [ evaluates to true if it cannot be found-
edly demonstrated that [ is true, i.e., if either [ is false or we do not know whether [ is
true or false.

A rule r is an expression of the form

«__
—

a;V---Vag < by,..,by,notb, q,...,n0th, , (2.1

where k > 0,n > m > 0, and ay, ..., ag, by, ..., b, are classical literals. We say that
ai, ..., ay is the head of r, while the conjunction by, ..., b,,, not by, .1, ..., not by, is the
body of r, where by, ..., b,, (respectively, not b,, 1, ..., not b,) is the positive (respec-
tively, negative) body of r. We use H(r) to denote its head literals, and B(r) to de-
note the set of all its body literals B*(r) U B~(r), where B*(r) = {by,...,b,,} and
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(a) Graph instance for (b) Legal 3-coloring of

(a) a (a) a

© ®» @ ®
Figure 2.1: Graphs for

B~(r) = {by41,---» by} A rule r without head literals (i.e., k = 0) is an integrity con-
straint. A rule r with exactly one head literal (i.e., k = 1) is a normal rule. If the body
of r is empty (that is, m = n = 0), then r is a fact, and we often omit “<—” An extended
disjunctive logic program (EDLP, or simply program) P is a finite set of rules r of the
form (2.1).

Programs without disjunction in the heads of rules are called extended logic pro-
grams (ELPs). A program P without negation as failure, i.e., forallr € P, B~(r) = @
is called positive logic program. If, additionally, no strong negation occurs in P, i.e.,
the only form of negation is default negation in rule bodies, then P is called a normal
logic program (NLP). The generalization of an NLP by allowing default negation in the
heads of rules is called generalized logic program (GLP). Additional program classes
of logic programs with the corresponding restrictions on the rules in a program are
summarized in Table Program classes based on dependency information such as
stratified programs (Apt et al.,1988) are not considered here.

Next we will provide an answer set program as an example for specifying compu-
tational problems in a uniform way. This program will encode a problem from graph
theory, namely the graph three-colorability (3COL) problem, which is a well-known
NP-complete problem (Garey et al.,|[1976, give an accessible proof that reduces 3SAT to
3COL). The 3COL problem is defined as follows:

INSTANCE: Graph G = (V, E).
QUESTION: Does G have a legal 3-coloring of its nodes, i.e., is there a mapping f: V —
{1, 2, 3} such that if (u, v) € E then f(u) # f(v)?

The encoding given in is uniform in the sense that it separates the
problem specification from the concrete instance of a computational problem. That is,
in the Answer Set Program, the instance of a problem is usually given as set of facts,
while an additional set of rules that correspond to the problem specification is based

'Tn this thesis, we will use both forms “a «” and “a,” to denote that a is a fact in a logic program.
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on the relations defined by the instance facts. This way, problem encodings become
uniform, and we can abstract from concrete instances when defining the rules of the
problem specification. This is the essence of the Answer Set Programming Paradigm,
see Eiter et al. (2009b) and Janhunen and Niemela (2016) for introductory material.

Example 2.1 (Graph Three-colorability (3COL)) Consider a graph G as shown in

which has six possible legal 3-colorings. One of them is depicted in

i.e., the mapping f such that f(a) = f(c) = 1 (using red nodes), f(b) =
f(d) = 2 (using green nodes), and f(e) = 3 (in blue). If we would add the edge (a,c)

to G, then G would not be three-colorable. Alternatively, adding (b,d) to G would
have the same effect.
Now let P be an answer set program with the following set of rules:

col(X, red) Vv col(X, green) V col(X, blue) < node(X)
«— col(X,C), col(Y,C), edge(X,Y)
node(X) « edge(X,Y)
node(X) « edge(Y,X)

edge(a,b) «
edge(b,c) «
edge(c,d) <
edge(d,a) «
edge(a,e) «
edge(b,e) <
edge(c,e) <
edge(d, e) «

This program is essentially split into two parts: one part comprising of the first four
rules encodes the problem specification of 3COL, while the other part composed of
the last eight facts encodes the graph from as a particular problem in-
stance. Thus, P is a uniform encoding, as customary in Answer Set Programming.
Note that the first rule is a disjunctive rule generating all 3-colorings using the colors
{red, green, blue} (instead of {1, 2, 3}), while the second rule is a constraint that forces
3-colorings to be legal as defined by the 3COL problem. The third and fourth rule use
the auxiliary unary predicate node for specifying the set of nodes given the set of edges
from the problem instance.

2.1.2 Semantics of Answer Set Programs

The semantics of extended disjunctive logic programs is defined for variable-free pro-
grams. Thus, we first define the ground instantiation of a program that eliminates its
variables.
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The Herbrand universe of a program P, denoted HUp, is the set of all constant sym-
bols C C C appearing in P. If there is no such constant symbol, then HUp, = {c},
where c is an arbitrary constant symbol from C. As usual, terms, atoms, literals, rules,
programs, etc. are ground iff they do not contain any variables. The Herbrand base of
a program P, denoted HBp, is the set of all ground (classical) literals that can be con-
structed from the predicate symbols appearing in P and the constant symbols in HUp.
A ground instance of a rule r € P is obtained from r by systematically replacing all
instances of each variable that occurs in r by a constant symbol from HUp. We use
ground(P) to denote the set of all ground instances of rules in P.

The semantics for EDLPs is defined first for positive ground programs. A set of
literals X C HBp is consistent iff {p, ~p} € X for every atom p € HBp. An interpreta-
tion I relative to a program P is a consistent subset of HBp. We say that a set of literals
S satisfies arule r if H(r) N S # @ whenever BY¥(r) C Sand B-(r) NS = @. A model
of a positive program P is an interpretation I C HBp such that I satisfies all rules in
P. An answer set of a positive program P is a minimal model of P with respect to set
inclusion.

In order to extend this definition to programs with negation as failure, we define the
Gelfond-Lifschitz transform (also often called the Gelfond-Lifschitz reduct) of a program
P relative to an interpretation I C HBp, denoted P’, as the ground positive program
that is obtained from ground(P) by

1. deleting every rule r such that B (r) N I # @, and
2. deleting the negative body from every remaining rule.

An answer set of a program P is an interpretation I C HBp such that I is an answer set
of PI.

Example 2.2 Consider the following program P:

p < notq
q < notp

Let I; = {p}; then, PI* = {p <} with the unique minimal model {p} and thus I, is an
answer set of P. Likewise, P has an answer set {q}. However, the empty set @ is not
an answer set of P, since the respective reduct would be {p «;q <} with the minimal

model {p, g}.
A constraint is used to eliminate “unwanted” models from the result, since its head
is implicitly assumed to be false. A model that satisfies the body of a constraint is hence

discarded from the set of answer sets.
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Example 2.3 Let P be the program

pX) Vv p(X) « q(X),notr(X)

q(c)) <
r(c;) <

The grounding of P is

p(c1) vV —p(e;) < q(cy),notr(cy)
p(cz) Vv 1p(cy) < q(cy), notr(cy)
q(cr) <
r(c;) <

This program has several models. For instance, I; = {q(c;),7(cy),r(c3), p(cy)}is a
model of P, since P11 is just

q(cy) <
r(c;) <

However, I; is not a minimal model of PI1. Now take I, = {g(c,),7(c,), p(c;)}. We
obtain Pz as

p(cr) vV pley) < qley)
q(cy) «
V(Cz) «—

Indeed, I, is a minimal model of P2 hence it is an answer set of P. The other answer
set is I3 = {q(cy), r(cy), ~p(cy)}, as I5 is a minimal model of P’z = Pz,

Example 2.4 Consider the 3COL example from above. The grounding of P is the
program ground(P):
col(a, red) V col(a, green) V col(a, blue) < node(a)
col(b, red) V col(b, green) V col(b, blue) < node(b)
col(c, red) V col(c, green) V col(c, blue) « node(c)
col(d, red) Vv col(d, green) V col(d, blue) < node(d)
col(e, red) V col(e, green) V col(e, blue) < node(e)
col(blue, red) V col(blue, green) V col(blue, blue) < node(blue)
col(green, red) V col(green, green) V col(green, blue) < node(green)
col(red, red) V col(red, green) V col(red, blue) < node(red)
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node(a)
node(a)

node(b)

edge(a,b)
edge(b,c)
edge(c,d)
edge(d, a)
edge(a, e)
edge(b, e)
edge(c, e)
edge(d, e)

T

T

T

T

T

rtrrtr Tt

col(a, 1), col(a, 1), edge(a, a)
col(a, 1), col(b, 1), edge(a, b)

col(a, 2), col(a, 2), edge(a, a)
col(a, 2), col(b, 2), edge(a, b)

col(a, a), col(a, a), edge(a, a)
col(a, a), col(b, a), edge(a, b)

edge(a, a)
edge(a,b)

edge(a,b)

Note that ground(P) also contains unintuitive instances of rules from P such as

col(blue, red) V col(blue, green) V col(blue, blue) < node(blue)

or

« col(a, a), col(a, a), edge(a, a) .

Since P is positive, for each Herbrand interpretation I, Pl = ground(P). Hence, the
minimal models of ground(P) and the answer sets of P coincide. One of them is the set

A = {edge(a, b), edge(b, c), edge(c, d), edge(d, a),
edge(a,e), edge(b, e), edge(c, e), edge(d, e),
node(a), node(b), node(c), node(d), node(e),
col(a, red), col(b, green), col(c, red), col(d, green), col(e, blue)} ,

which corresponds to the 3-coloring shown in
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The main reasoning tasks that are associated with EDLPs under the answer-set
semantics are the following:

+ decide whether a given program P has an answer set;

« given a program P and a ground propositional formula ¢, decide whether ¢ holds
in every (respectively, some) answer set of P (cautious (respectively, brave) rea-
soning);

« given a program P and an interpretation I C HBp, decide whether I is an answer
set of P (answer-set checking); and

- enumerate the set of all answer sets of a given program P.

2.2 Generalized Quantifier Logic Programs

In this section, we recall definitions from Eiter et al. (1997b, 2000) for Generalized Quan-
tifier Logic Programs, which form the basis for modular logic programs with General-
ized Quantifiers (GQMLP) in GQMLPs have been proposed as a logic program-
ming formalism to support combining independent modules of logic programs. Such
modular programs are nonmonotonic logic programs extended by the notion of gen-
eralized quantifiers (see Vaanénen, 1999, for an introduction). In this approach, every
module can be accessed via its generalized quantifier interface. GQLPs and GQMLPs
are close in spirit to HEX-programs (Eiter et al., [2012a, 2006b, 2017), which are based
on external atoms instead of generalized quantifier atoms.

2.2.1 Basic Concepts from Mathematical Logic

We start with defining notation. Letters P, Q, ... denote predicates, lower case letters
X,y,Z variables, a, b, c, ... constants, and f,g... functions. The bold face version P
of a predicate symbol P denotes a list Py, ..., P, of predicate symbols, and similarly
for variable, function, and constant symbols. Fraktur letters 2, %, ... denote logical
structures. Sets of structures are denoted by capital letter C, and classes or mappings
thereof by M, Q, ...; lower case Greek letters 7, 0, ... denote signatures.

Definition 2.1 (Signature).

A signature T is a sequence (P?l, ,ng,ffl, wes f1'5C15 e s Cp) Where the P; are rela-
tional symbols of arity a; > 0, the f; are functions with b; > 1 arguments, and the c;
are constants. 7 is relational, if it contains only relational symbols.

by
l
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Definition 2.2 (Structure).

A structure 2 over 7 is denoted by (A,Pm, ,P?{[, ff[, ,flm, c%[, s cr?,[l). The set A is
called the universe or domain of 2, and denoted |2(|. 2 is finite if || is finite. The set
of all structures over 7 is denoted by Struct(t).

Let 2, B € Struct(r) such that || = |B|. Then, A C B, if PX C PP for1 <i <k,
f?[=fi%for1§i§l,andc?[=c?f0r1§i§m.

For a relational signature 7 and integer I, ) = (Pial, ,Pfcak) is called the l-ary
vectorization of T.

Let 2 be a relational structure, and U C |2|. Then the restriction of 2 to uni-
verse U, in symbols A|U, is the structure (U,P%[ Nnu%, .. ,P,%[ N U%). For a 1-
structure 2 and a signature 7, contained in 7, 2|7 is the 7(-structure obtained from 2
by removing all relations, functions, and constants not contained in 7. Given a 7q-
structure B such that |A| = |B| and B = A|r, then B is said to be the reduct of A
to 7, and conversely, 2 is an expansion of B to 7.

The set of all finite models of a formula ¥ is denoted by Mod(¥).

Let ¢(xq, ..., X;,) be a formula with free variables x;, ..., X,,, and let 2 be a structure.
Then ¢¥ denotes the n-ary relation {(d;, ...,d,) € |A|" | A E ¢(dy, ..., d,)}

Let £ be a syntactic fragment of first-order logic. Given signatures 7, o and a
natural number k, a k-ary interpretation I of 7 into o is a definition of the ¢(®) relations
in terms of 7, i.e., a tuple of £ formulas, such that for each predicate symbol R in &
with arity 7, I contains a formula ¢ over T with r - k free variables which defines R"¥.
For a structure A € Struct(r), I(A) denotes the structure over o) which is defined
by I.

2.2.2 Generalized Quantifiers
Next, we define Generalized Quantifiers and their semantics.

Definition 2.3 (Generalized quantifiers).

Let C be a class of logical structures over a relational signature o = (Ry, ..., R,,) with
arities ay, ..., a, such that C is closed under isomorphism, i.e., if A = B and A € C,
then B € C. Such class C has an associated generalized quantifier (GQ) Q.

The intended semantics of a GQ Qc is to check if a relation defined by the under-
lying logic belongs to a class of logical structures C.

Definition 2.4 (Extension of logics by a GQ).

The extension £(Qc) of a logic £ by a GQ Q¢ is the closure of £ under the following
rule: If ¢;(x;), ..., P (x;,) are formulas of logic £, where every ¢; has at least a; free
variables x;, then Qcxy -+ X, [¢1, ... , §,,| is a formula of the extension £(Q), in which
the occurrences of xy, ..., x,, are bound.
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For clarity, we shall often write the list of remaining free variables y after the for-
mula. The semantics of a GQ Qc is defined as follows.

Definition 2.5 (Semantics of GQs).
Let © be the formula

QCXI o Xn[¢1’ ey ¢n](Y)a

and let 2 be a structure and b a tuple over |2| matching the arity of y. Then (2, b) F O,
if and only if the structure (A, ¢?[’b, s qb%l[’b) belongs to C, where

¢ = {a | AE ¢yla, b} .

Example 2.5 Let U be a structure with a domain A = |2|. The following list shows
common generalized quantifiers and their semantics. Some of them will be used in
further examples.

« Qy = {(A, A)} (universal quantifier)

« Q3 ={(A,U)| @ # U C A} (existential quantifier)

« Q. ={(A,U,{v}) | v € A\ U} (complement quantifier)

« Qu ={(A,U,V)| U,V C A, |U| > |V|} (majority quantifier)
« Qr ={(A,U)||U| =0 mod k} (modularity quantifier)

(A,E) and (A,F)

are isomorphic graphs } (isomorphism quantifier)

. ngi(A,E,F)‘

there is a path from u to
vinthe graphE CAX A

} (transitive closure quantifier)

« Qpe= {(A,E, (wv))

2.2.3 Logic Programs with Generalized Quantifiers

Now we can define logic programs with generalized quantifiers.

Definition 2.6 (GQ atoms and literals).

Suppose that Q¢ is a GQ defined over the signature o = (Ry, ..., R, Ry ;1) with associ-
ated arities ay, ..., 4y, a,41 = [, and that Sy, ..., S,, are predicates from 7 such that the
arity of S; equals a;. Then, the formula

Qcxy -+ X4 1[S1(X1)s o 5 Sn(Xp), X1 = v](v) (2.2)

is a GQ-atom with free variables v = vq,...,v;. A GQ-literal is a possibly negated
GQ-atom. For brevity, we denote a GQ atom (2.2) by

Qc[S](v) (respectively, Qc[S], if v is void) , (2.3)

where § = Sy, ..., S}, and similarly for negative GQ-literals.
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Notice that formula x,,,; = v located in GQ-atom (2.2 defines the singleton re-
lation {v}, whose purpose is to transfer domain elements into the quantifier. For GQ-
atoms of form (2.3), bound variables x4, ..., x,, are implicitly understood.

Definition 2.7 (GQ logic programs).
Let 7 be a signature for describing the program input, and let 7 be an extension of 7, by
new relational symbols. A logic program with GQs (GQLP) on 7 is a finite collection P
of rules

A < By,...,By, (2.4)

where the head A is a 7-atom whose predicate does not occur in 7, and each body
literal B; is either a t-literal or a generalized quantifier literal (GQ-literal) over 7.

For any collection Q of generalized quantifiers, we denote by 77, the extension of
7 by all predicate letters Q¢[S], where Q- € Q and S = S, ..., S, is a list of predicate
letters S; from 7 which matches the signature of Q; every such Q[S] is a GQ-predicate.
Notice that 7 is finite if 7 and Q are finite. Then, a GQLP over 7 is syntactically an
ordinary logic program over the signature 7.

Example 2.6 Consider the following program P, which uses two GQs (see
for their definitions). One is the isomorphism GQ Q.[Gy,G,], which tells
whether G; and G, are isomorphic graphs, and the transitive closure GQ TC:

S(x,y) < QTC[E](an),QTC[E](an)
Gq(x,y) < E(x,y),S(a,x),5(a,y)
Gp(x,y) < E(x,y),S(b,x),S(b,y)

Iso < QE[Ga’Gb]

Suppose that 7, contains the relation E and the constant symbols a and b. Given
a graph G = (V,E), and vertices a,b € V, this program assigns the propositional
letter Iso to true, if the strongly connected components in which a and b lie are iso-
morphic.

The semantics of a GQLP P is in spirit of the stable model semantics (Gelfond and
Lifschitz, 1988). In the following, suppose that we have signatures 7 and 7 as above, a
GQLP 2 and a structure 2 € Struct(7).

Definition 2.8 (Ground instantiation).
Then, the ground instantiation of ? on 2, denoted ground(P, A), is the collection of all
interpreted rules C6, where C is from 2 and 6 is any ground substitution over 2.

Definition 2.9 (Reduct).
Let ? be a GQLP and A € Struct(r). The reduct of P with respect to 2, denoted
red(P,A), is the set of rules obtained from ground(P, 2A) as follows.
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1. Remove every rule r with a literal L in the body of r such that 2 ¥ L, where L
is either negative or a GQ-literal.

2. Remove all negative literals and GQ-literals from the remaining rules.

Notice that red(P, ) is a collection of interpreted Horn clauses, hence there is a
least structure B, denoted A, (P), such that B|r, = A|zr, (i.e., B provides the same
input to P as A) and B F r, for every rule r € red(P,A). Since red(P, A) is an ordinary
logic program, the structure 2 (), also called the least model of P with respect to 2,
can be obtained as the least fixpoint of a monotonic operator, confer Lloyd (1987).

Definition 2.10 (GQ-stable models).
Let 2 be a GQLP and let %, € Struct(ry). An expansion 2 € Struct(r) of A, is a
GQ-stable model of P on U, iff it satisfies the fixpoint equation

A = A (P).

The collection of all stable models of  is denoted by SM(P, A,,).
The meaning of P on U, denoted Mjf (Ay), is the structure which is the intersec-
tion of all GQ-stable models of P on A, i.e.,

M) = [

%[ESM(?,?[())

If SM(P, ) = @, then M3 () is the unique maximal structure B such that B|z, =
2A,.

Example 2.7 Consider the following program P, which uses the majority quantifier
Qps and the modularity quantifier Q, (i.e., the even quantifier).

Q(x) < =S(x)

S(x) <« =Q(x)

A(x) < Quml[Q,S],S(x)

Q(x) < Qy[A],S(x)
W(a,b) «

Suppose that 7, contains merely the constant symbols a and b, and 7 contains in ad-
dition the relation symbols W, A, Q, and S.

Intuitively, the first two clauses choose complementary extensions for Q and S;
the third clause assures that S implies A, if Q holds on more individuals than S; simi-
larly, the fourth clause assures that S implies Q, if A holds true on an even number of
elements.

Consider Herbrand models on 7 and let 3, = {W(a, b), Q(a), Q(b)}. (We use the
familiar notation for Herbrand models.) This interpretation is a GQ-stable model of
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P (with respect to the unique Herbrand model MM, € Struct(zy)). Indeed, the reduct
red(P, ;) consists of the clauses

W(a,b) « A(b) < S(b)
Q(a) « Q(a) « S(a)
Q(b) « Q(b) < S(b)
A(a) < S(a)

Program 2 has the least model I, with respect to M. Another GQ-stable model
of P is M, = {W(a,b), S(a), S(b)}. The Herbrand model M; = {W(a,b), Q(a),
S(b)} is not a GQ-stable model of P: red(P, ;) contains the clauses S(b) < and
Q(b) < S(b), which means that the least model of red(P, M) contains Q(b). We
obtain that SM(P, M) = {WM;, M}, thus M, and M, are all GQ-stable models of P
with respect to IN,.

2.3 Modular Logic Programming with GQLPs

Based on GQLPs, we define a semantics for modular logic programming in this sec-
tion. This approach has been introduced by Eiter et al. (1997b} 2000), and we use their
definitions here.

2.3.1 Syntax of modular logic programs

The syntax of modular logic programs (GOMLPs) is the one of GQLPs defined in
with the difference that the GQ-literals are intended to refer to a logic program, which
is a logic program module. The similarity type of LP[Q] is the list of arities of predicates
in Q.

We shall refer to the calling program as the main program, and the called module
as the subprogram; the GQ-literals in a GQMLP are termed call literals, and the GQ-
predicates call predicates. An atom is a call atom, if its predicate is a call predicate.
To distinguish ordinary predicates, atoms, and literals from call predicates, call atoms,
and call literals, we call the former standard predicates (atoms, literals, respectively).

Definition 2.11 (Logic program module).

A logic program module u is a pair (LP[Q], P) of a module head LP[Q], which has an
associated integer n > 0 (the arity), and an ordinary logic program P (the body), in
which the predicates Q are the input predicates and LP is the output predicate having
arity n; syntactically, occurrences of the predicates Q in P are restricted to rule bodies.
We require that each LP module is uniquely identified by its name LP and the list of
the arities of the Q; in Q (its similarity type).
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Dlrected graph (b) Transitive closure of directed graph

ﬂll
N"

Figure 2.2: Graphs for Example 2

Definition 2.12 (Modular logic programs).
A modular logic program is a finite collection P of rules

A<Ly,...Ly, ,

where the head A is a standard atom and each body literal L; is either a standard literal
or a call literal, plus a collection € of logic program modules such that for each call
literal (=)LP[Q](t) occurring in P, there is a module LP[Q'] in €, where LP has the
arity of t and each Q; € Q has the arity of Q; € Q'.

2.3.2 Semantics of modular logic programs

Next, we define the meaning of a modular logic program.

Every LP module u = (LP[Q], P) under the semantics M*! can be seen as a GQ
Qc(u) that is associated with the collection C(u) of all structures 2 = (A, Q',R"),
where the Q' are relations for the predicates Q on A and R’ = {a}, for any tuple a
over A such that

C(w) = {(A, Q. {a}) | MP'((A,Q) F LP(a)} .

Intuitively, P derives the atom LP(a) on €, = (4,Q"). We call Qc(u) the module
quantifier of u under M*'.

Let P be a modular logic program. The meaning of P under M is defined as
the meaning of P, viewed as GQLP over the collection of GQs associated with the LP
modules used by P.

Example 2.8 Let I = {E(1,2),E(2,3),E(3,1),E(2,4),U(1)} be a Herbrand model of
the signature 7 = {E, U} on the domain {1, 2, 3,4}. Then, E* is the digraph depicted

in
Consider the module u = (TC[G], Prc), where Py is the program
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TC(x,y) < G(x,y)
TC(x,y) « TC(x,2),G(z,y)

The extension of TC in the least fixpoint of Py is the transitive closure of the binary
relation G.

The program Py has on 2y = {G(1,2),G(2,3),G(3,1),G(2,4)} the least model
M’ = {G(1,2),G(2,3),G(3,1), G(2, )} U{TC, j), TC(i,4) | 1 < i, j < 3}
shows TC¥o, where thick lines highlight those edges from graph TC¥o that do not
belong to directed graph G*o. Thus, a call TC[E] of u, where E is defined in I, yields
that, e.g., TC[E](1,1) is true, while TC[E](4, 1) is false.

Note that compared to the GQLP in[Example 2.6, we use 1 to define a generalized

quantifier that is equivalent to GQ Q7¢ from

2.3.3 Shortcomings of Generalized Quantifier Modular Logic
Programs

An important restriction for GQMLPs is that modules do not contain call literals them-
selves, i.e., the main program is the only part of a GQ modular logic program that can
access subprograms through generalized quantifier calls, but subprograms are forbid-
den to have call literals. This essential restriction is important, as the semantics for
GQMLPs would create semantic deficiencies like unfounded answer sets.

There is a way that allows one to make calls from subprograms to other subpro-
grams, but they must be strictly hierarchical. In essence, the call graph of the mod-
ules must be acyclic and this way, one can only express finitely nested logic programs
without mutual recursion (see the discussion by Eiter et al., 2000, Section 7). Similar
to GQLPs and GQMLPs, Eiter et al. (2013) define nested HEx-programs, which give a
semantics to hierarchical subprograms using external atoms; we defer the discussion
to Chapter

In the following chapters of this thesis, we will shed light on this problem and
provide a solution to this restriction using modular nonmonotonic logic programs. To
this end, we start with defining the principle framework for Modular Nonmonotonic
Logic Programs next and establish basic semantic properties for them.
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Modular Nonmonotonic
Logic Programs

E start here with our framework for modular answer set programs,

and define first syntax and then semantics of such programs. We as-

sume that the reader is familiar with basic notions of logic program-

ming and the answer set semantics of nonmonotonic logic programs

(see Chapter [2| and Gelfond and Lifschitz, [1991). The syntax is based on disjunctive

logic programs; our modular logic programs consist of modules as a way to structure

logic programs. Moreover, such modules allow for input provided by other modules;

it is safe to say that one module may call other modules and additionally provide in-

put. We pose no essential restriction on the rules, and modules may mutually call each
other in a recursive way, and, on top of that, provide mutual input.

The declarative semantics we provide for MLPs caters for this situation and is thus
not straight-forward. By the very notion of module input, it is apparent that modules
must be instantiated before they can be “used” When defining a declarative semantics,
we abstract from the computational view of module calls and do not consider their
operational semantics. This would require to consider module call chains, which may
lead to infinite loops and thus necessitate loop checking. The MLP semantics is similar
in nature to Kripke semantics (Blackburn and Benthem, [2007; Goranko and Otto, 2007):
instead of worlds, there are so-called value calls with input, and the call graph of an MLP
resembles the accessibility relation in a Kripke frame. In contrast to Kripke semantics,
MLP semantics does not consider situations that are not modeled within the modular
program, i.e., if a module accesses another module, then there will be a labeled edge in
the call graph that records input information. This is different from Kripke semantics,
which admits Kripke frames of any shape.

To this end, we delineate contexts of models that carry instantiations of modules
and serve to define answer sets for modular programs. As noted by Eiter et al. (1997b),
answer sets of modular programs based on Gelfond-Lifschitz-style reducts may be
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weaker than answer sets of ordinary logic programs, we thus based the notion of an-
swer sets on the FLP-reduct (Faber et al.,|2011) in order to gain the desired property of
minimality in answer sets.

3.1 Syntax of Modular Nonmonotonic Logic
Programs

We consider programs in a function-free first-order (Datalog) setting (this restriction
is not essential from a conceptual point of view, but convenient for the purposes of
this work).

Let V be a vocabulary €, P, X, and M of mutually disjoint sets whose elements are
called constants, predicate, variable, and module names, respectively, where each p € P
has a fixed associated arity n > 0, and each module name in M has a fixed associated
list @ = qq,...,qk (k > 0) of predicate names q; € P (the formal input parameters).
Unless stated otherwise, elements from X (respectively, € U P) are denoted with first
letter in upper case (respectively, lower case).

Elements from €U X are called terms. Ordinary atoms (or simply atoms) are of the
form p(ty,...,t,), where p € P and t, ..., t,, are terms; n > 0 is the arity of the atom.
A module atom is of the form

P[py,..., pxl-o(ty,.... t) ,k,1 >0, (3.1)

where P € M is a module name, py, ..., pi is a list of predicate names p; € P, called
module input list, such that p; has the arity of the formal input parameter g; from P, and
0 € P is a predicate name with arity [ such that for the list of terms ¢4, ..., t;, 0(ty, ..., £7)
is an ordinary atom.

Intuitively, a module atom provides a way for deciding the truth value of a ground
atom o(c) in a program P depending on the extension of a set of input predicates.

A rule r is of the form

ay V- Vag < By Pm, 00t Brytq, ..., 00t G, (3.2)

wherek > 1,n >m >0, a4, ..., 0y are atoms, and 31, ... , 8, are either atoms or module
atoms. We define H(r) = {ay,...,ax} and B(r) = B*(r) U B~(r), where B*(r) =
{B1s s Bmtand B~ (r) = {Bms1>-->Pn} U B(r) = @ and H(r) # @, thenr is a fact; r
is ordinary, if it contains only ordinary atoms. A rule r is called positive if it satisfies
m = n; r is a Horn rule if r is positive and k = 1. If k < 1, then r is called normal.
Rules without restrictions are called disjunctive.

We now formally define the syntax of modules.
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Definition 3.1 (Module).

A module is a pair m = (P[q],R), where P € M with associated formal input q, and
R is a finite set of rules. It is ordinary, if all rules in R are ordinary, and ground, if all
rules in R are ground. A module m is either a main module or a library module; if it is
a main module, then |q| = 0.

We refer with R(m) to the rule set of m, or simply identify R with P respectively
P[q] if m is identified by P. When clear from the context, we omit empty [] and ()
from (main) modules and module atoms. E.g., the module Parity[q] in[Example 1.1]is a
library module; further examples are given below.

Based on modules, we define modular logic programs as follows.

Definition 3.2 (Modular logic program).
A modular logic program (MLP) P is an n-tuple of modules

(my,..,my,) ,n>1, (3.3)

consisting of at least one main module, where M = {P;,...,P,}. We say that P is
ground, if each module is ground.

An MLP P = (my, ..., m,,) is called positive (respectively, Horn or normal) if for each
module m; of P, all rules r € R(m;) are positive (respectively, Horn or normal); P is
said to have empty inputs if all the associated lists of inputs for each module m; of P is
empty.

Example 3.1 (cont’d) Suppose that we have a module m, = (P[q],R,), where R,
is taken from the rules shown in Besides m,, we have further module
m; = (Q[],Ry), in which R; is the set of rules

s(a) <
s(b) <
s(c) «
s(d) <
$1(X) V 5,(X) < s(X)
ok < P[s;].even, P[s,].even

ok < not ok
Informally, the disjunctive rule splits the predicate s into two predicates s; and s,;

the subsequent rules check that they both store sets of even cardinality. Formally,
P = (m;, m,) forms the respective MLP; here, m; is the (single) main module.
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The example above shows an interesting property of MLPs. Note that the predicates
in are at most unary, i.e., the program P uses only monadic relations, and
that we have expressed the Even property with this program. It is well known that
traditional logic programs using monadic predicates cannot express Even, and this also
holds for programs with negation, which follows from Libkin (2004} Proposition 7.12).
The following proposition formally shows this observation.

Proposition 3.1 (Even not in Monadic ASP)
Monadic Answer Set Programs cannot express Even.

Proor Let P be a monadic answer set program. Without loss of generality, we assume
that variables in P are standardized apart, i.e., each rule in P has a unique set of vari-
ables, and that P does not contain constant symbols; every constant ¢ can be replaced
by a singleton unary relation. Let A = {p,, ..., p,} be the predicates occurring in P,
and A = {p, ..., P} be a set a fresh predicates.

We define ®p to be the following monadic second order logic (MSO) formula:

JA[Tp AVA((A< A) D Ep)]
where

o for the set X = {X1, ... ,Xy} of variables occurring in P

Tp=VX /\ B, AN, > H,)

repP

and

[1]

p=3x\/~(B, AN, D H,) ;

reP

« for each rule r of form in P,

Hy = a1Xpe1) V-V arX o)

H, = @Xpe1) VeV G i)

B, = bi(Xork+1) A+ Abi(Xo(r k4 m))

By = by Xpgris1) A+ AbmXp(rkam))

Ny = by 1 Xpr kama+1) A - A b X o k)

where p(r, i) maps to a variable index for the set of variables X;
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« A < Aisshort for A < A A (A < A), where for the fresh variable Y
ASA =YY (5i(Y) D pi(Y) A - AVY (B(Y) D p(Y))

and
A<SA=VY(0(Y) D Bi(Y) A AVY (p(Y) D Pp(Y)) .

Intuitively, ®p expresses answer set semantics of a monadic program P as an MSO
formula:

« A and A stand for interpretations of the monadic predicates in P,
+ I'p expresses that all rules r € P are satisfied by A,
« A < A states that A is a proper subset of A,

« Hp is true whenever A does not satisfy at least one rule of the reduct P4, note
that the truth value of N, is fixed by A.

Thus the intuitive reading of the MSO formula ®p gives us that there exists an inter-
pretation A such that A is a model of P, and for all proper subsets A of A, A does not
satisfy the reduct P4.

We show now the following: ®p is satisfiable if and only if P has an answer set.

(&) Let M be an answer set of the monadic answer set program P. We transform M
to a relational interpretation I = (Usgy, -™*) for ®p as follows:

. for each p;(c) € M we add c to Ugy, and set ¢ = c,
. for predicates p;, 1 < i < ¢, we set p>* = {c™ | pi(c) € M}, and
« for predicates p;, 1 <i < ¢ we set ﬁlm to any proper subset of p?‘n.

Intuitively, M gives us an extension for A and A encodes a proper subset of M. Since
M E P, it is easy to see that for an extension for A, the model M of Pp satisfies 'p.
By M being an answer set, M is a minimal model of PM. Thus, for all proper subsets
N of M, there exists a rule r' € PM such that N ¥ r’,i.e, N E B*(+') and N ¥ H(").
Thus, if the set variable extensions in A happen to be a proper subset of the set variable
extensions in A, which is encoded by A < A, then at least one rule must be false in PM:
hence for an extension A such that for all extensions A the formula (A < A) D Ep is
true in M. And since M is minimal, this holds for all proper subsets of A, hence
VA ((Z < A) D E.P) is satisfied by 9. Thus, Pp is satisfiable.
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(=) Let ®p be satisfiable. We can deduce that P has an answer set M that can be
transformed from a model M = (Uygy, -™) for @p as follows:

M ={p;(c) | forc € Cand p; € A such that ™ € plm} .

Thus, M corresponds to the extension of predicates from A. From I satisfying the
conjunct I'p for an extension A we can deduce M E P and M E PM. Now we show that
since M is a model of VA ((E < A) DE p) for the fixed extension A, we get that M is a
minimal model of PM. Towards a contradiction, assume there exists an interpretation
N C M that is a model of PM. Thus, for A corresponding to N the antecedent A < A
forces that the consequent Ep must be true in I, which means that for at least one
r'" € PM | the interpretation N corresponding to A does not satisfy ’. But this is a
contradiction to N E PM, Consequently, M is a minimal model of PM_ and thus M is
an answer set of P.

Since we can express answer set existence of P in MSO, it follows from Libkin (2004,
Proposition 7.12) that Even cannot be expressed with monadic answer set programs.[]

Related to the result above are frameworks for specifying nonmonotonic logics
in second order logic have been presented by Bogaerts et al. (2016) and Egly et al.
(2000), which use suitable encodings to capture the answer sets of logic programs by
Quantified Boolean Formulas.

The next example demonstrates positive mutual recursion over modules.

Example 3.2 Take, as an example, the MLP P = (m;, m,), where both modules m; =
(P1[], Ry) with Ry = {p, < P,.p,} and my = (P[], R;) with Ry = {p, < P1.p,} are
main modules. Intuitively, P amounts to the ordinary logic program {a < b; b « a}.

3.2 Semantics of Modular Nonmonotonic Logic
Programs

We now define the semantics of modular logic programs. It is defined in terms of Her-
brand interpretations and grounding as customary in traditional logic programming
and ASP.

The Herbrand base with respect to vocabulary V, HBy, is the set of all possible
ground ordinary and module atoms that can be built using C, P and M; if V is implicit
from an MLP P, it is the Herbrand base of P and denoted by HBp. The grounding of a
rule r is the set gr(r) of all ground instances of r with respect to C; the grounding of
arule set Ris gr(R) = UreR gr(r), and the one of a module m, gr(m), is defined by
replacing the rules in R(m) by gr(R(m)); the grounding of an MLP P is gr(P), which
is formed by grounding each module m; of P.

58



3.2. Semantics of Modular Nonmonotonic Logic Programs

The semantics of an arbitrary MLP P is given in terms of gr(P).

Let S C HBp be any set of atoms. For any list of predicate names p = py,..., px
and q = ¢y, ..., gk, we use the notation S|, = {pi(c) € S | i € {1,...,k}} and Slp =
{q9i(c) | pi(c) € S,i €1, ..., k}}.

Definition 3.3 (Value calls).

Let P be an MLP. For a module name P € M with associated formal input q we say
that P[S] is a value call with input S, where S C HBpl|4. Let VC(P) denote the set of all
value calls P[S] with input S such that P € M.

Note that VC(P) is also used as index set here. Given MLP P = (m,,...,m,),
VC(P) is the set of indexes with value calls of the form P;[S], where i and S is used as
a combined index. Here, i ranges from 1 to n, and S is a subset of HBp restricted to
atoms with predicates from the input list q; of module m; = (P;[q;], R;). For the given
module m;, VC(P) includes {P;[@], ..., P;[HBp|q,|}. In case where m; = (P[], R;) is a
main module or has empty input, i.e., the input list q; is void, only P;[@] remains as
value call in VC(P).

Based on value calls with inputs, we define module and program instantiations.

Definition 3.4 (Module and program instantiation).

A rule base is an (indexed) tuple R = (Rp(g; | P[S] € VC(P)) of sets of rules Rp(g). Fora
module m; = (P;[q;], R;) from P, its instantiation with S C HBp|y, is Ip(P;[S]) = R;US.
For an MLP P, its instantiation is the rule base I(P) = (Ip(P;[S]) | P;[S] € VC(P)).

We next define (Herbrand) interpretations and models of an MLP.

Definition 3.5 (Interpretation).
An interpretation M of an MLP P is an (indexed) tuple (M;/S | P;[S] € VC(P)), where
all M;/S C HBp contain only ordinary atoms.

Each M;/S is essentially short-cut notation for identifying the element of tuple M
that is indexed by value call P;[S]. Bothiand S give us the combined index in M for the
set of atoms that is used to interpret the instantiation Ip(P;[S]) of module m; relative
to Pi [S]

Based on interpretations, we define (classical) models of MLPs.

Definition 3.6 (Model).
Let P be an MLP, P;[S] be a value call from VC(P), and m;, = (P[q], Rx) be a module
from P. An interpretation M of P is a model of

« a ground atom o € HBp at P;[S], denoted M, P;[S] F a, if
- a € M;/S, in case « is an ordinary atom, and if

- o(c) € Mk/((Mi/S)|gk), in case a is a module atom Py [p].o(c);
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« a ground rule r at P;[S] (M, P;[S] F r), if M, P;[S] E H(r) or M, P;[S] ¥ B(r),
where

- M, P;[S] E H(r) if M, P;[S] E a for some a € H(r), and

- M, P;[S] F B(r) if M, P;[S] F afor all« € B*(r) and M, P;[S] ¥ « for all
a € B~(r);

« a set of ground rules R at P;[S] (M, P;[S] E R) iff M, P;[S] F r for all r € R; and
- a ground rule base R (M F R) iff M, P;[S] F Rp (g for all P;[S] € VC(P).

Finally, M is a model of an MLP P, denoted M F P, if M F I(P) in case P is ground
respectively, M F gr(P), if P is nonground. An MLP P is satisfiable, if it has a model.

Example 3.3 Consider P from thenM = (M,/@, M,/®) is a model of P,
where M,/@ = {p;} and M,/@ = {p,}. Indeed, by Definition 3.6/ we have M, P,[&] F
P1i; M, P,[@] F py; M, P1[@] F P,.py; M, P,[@] F Py.py; hence M, P1[@] F p; «
P,.p2; M, P,[@] F p; < Py.py; thus M, P1[D] F Ip(P1[D]) and M, P,[@] F Ip(P,[D]);
therefore M F I(P) where I(P) = (Ip(P;[@]), Ip(P5[@])); and finally M F P.

We next proceed to define answer sets of an MLP P. To this end, we need to com-
pare models and single out minimal models.

Definition 3.7 (Minimal models).

For any interpretations M and M’ of P, we define that M < M/, if for every P;[S] €
VC(P) it holds that M;/S C M;/S,and M < M', if bothM # M’ and M < M'. A
model M of P (respectively, a ground rule base R) is minimal, if P (respectively, R) has
no model M’ such that M’ < M. The set of all minimal models of P (respectively, R) is
denoted by MM (P) (respectively, MM (R)).

In order to focus on relevant modules, we introduce the formal notion of a call

graph.

Definition 3.8 (Call graph).

Let P be an MLP, P;[S] and Py [T] be value calls from VC(P), and m; = (P;[q;], R;) and
my = (Prlqil, Ri) be modules from P. The call graph of an MLP P is a labeled digraph
CGp = (V, E, ) with vertex set V = VC(P) and an edge e from P;[S] to Pi[T] in E iff
Py [pl.o(t) occurs in R(m;); furthermore, e is labeled with an input list p, denoted I(e).
Given an interpretation M, the relevant call graph CGp(M) = (V',E") of P with respect
to M is the subgraph of CGp where E’ contains all edges from P;[S] to Pi[T] of CGp
such that (M;/S )|?(ke) = T, and V' contains all P;[S] that are main module instantiations
or induced by E’; any such P;[S] is called relevant with respect to M.
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Example 3.4 Consider P from[Example 3.2] Then I(P) = (Ip(P,[@]), Ip(P,[3])), and
we obtain the call graph CGp = (VC(P),{(P1[@], P»[@]), (P,|2], P1[@])}, 1), where 1
maps each edge to the void input list (see [Figure 3.1). Both P,[@] and P,[@] are rele-
vant, since they are main modules. Moreover, since both modules and all instantiations
have empty input, we have that CGp(M) = CGp for any interpretation M of P.

Pl{g(a)}] Pl{q(a), ..., q(d)}]

Example 3.5 Consider P from The instantiation of P is

1(P) = (Ip(QI2D, Ip(P@ D), Ip(Pl{g(a)}D), ..., Ip(P[{q(a), ..., q(d)}]) ,
hence the graph shown in[Figure 3.2)is the call graph of P. The value call Q[@] is always

relevant (because it is main), the other value calls are only relevant in certain models.
For instance, in a model M = (Mo/@, Mp/@, Mp/{g(a)},...) such that Mp/{g(a)} =
{q(a), skip(a), odd}, we have that P[] is relevant as (MP/{q(a)})|g, =

We refer to the vertex and edge set of a graph G by V(G) and E(G), respectively.
For defining answer sets, we use a reduct of the instantiated program as customary
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in ASP. A suggestive way is to apply a traditional reduct to each module instance
of P; however, this is not fully satisfactory, as in practice P might contain module
instantiations which have no answer sets for certain inputs, which compromises the
existence of an answer set of P. For this reason, we contextualize the notions of reduct
and answer sets.

Definition 3.9 (Context-based reduct).
Let M be an interpretation of an MLP P. A context for M is any set C C VC(P) such
that V(CGp(M)) C C. The reduct of P at P[S] with respect to M and C is the rule set

{r € I;@)(P[S]) | M, P[S] E B(r)} if P[S]€C,

M,C _
FP(P[S]) - Igr (P)(P[S]) otherwise.

The reduct of P with respect to M and C is f PMC = (f P(P[S)M'C | P[S] € VC(P)).

That is, outside C the module instantiations of P (respectively, gr(P)) remain un-
touched, while inside C the FLP-reduct (Faber et al., 2011) is applied.

Definition 3.10 (Answer set).
Let M be an interpretation of a ground MLP P. Then M is an answer set of P with respect
to a context C for M if M is a minimal model of f PM-C,

Note that C is a parameter that allows to select a degree of overall-stability for
answer sets of P. The extremal case C = VC(P) requires that all module instances have
answer sets. On the other end, the minimal context C = V(CGp(M)) is the relevant
call graph of P; we consider this as the default context and omit C from notation.

Example 3.6 Let P be from We have that P obtains answer sets of four
different shapes, with each of them having exactly two instances of s; and two in-
stances of s, for the model M /@ of instantiation Q[J]. A specific answer set is

(Mo/@, Mp/@, Mp/ig(a)}, Mp/{q(b)}, Mp/ig(c)},

where
« Mo/@ = {s1(a), 5,(b), s1(¢), s2(d), 0k, s(a), s(b), s(c), s(d)},
o Mp/@ = {even},

« all models for instantiations whose input is a singleton set, i.e., for Mp/{q(a)},
Mp/{q(b)}, Mp/{q(c)}, and Mp/{q(d)}, contain odd and the respective skip’d el-

ement, and
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« both Mp/{q(a),q(c)} and Mp/{q(b), q(d)} contain even.

Example 3.7 Consider P from Let My = (M?/@,MS/®) such that
MY/3 = M9/@ = @, and M; = (M1/@, M3/@) such that Mi/@ = {p,} and M3/@ =
{p2}, be interpretations for P. One can verify that both are models of P. Since we fixed
the context C to VC(P), the reducts with respect to our models are

fPYo = (fP®[@DM, fP(P,[2]Y°) = (2,2)

and
FPM = (fP(P,[@D™1, f P(P,[@])M) = (Ip(P1[@]), Ip(P,[2])) -

The minimal model of f PMo is M,,, hence it is an answer set of P, whereas we have
that the minimal model of f PM! is also M,, i.e., M is not an answer set of P.

A question that could arise is whether the FLP-reduct is really needed in order
to obtain a well-behaved semantics for modular programs, or whether one could go
with the standard GL-reduct. The main difference between the GL- and FLP-reduct
is that the latter treats all atoms as “black boxes” (Faber et al., 2011), i.e., atoms need
the definition of a proper satisfaction relation F for evaluation, whereas the GL-reduct
simply needs set membership for verifying the value of an atom in an interpretation.
The next example will clarify this point.

Example 3.8 Let R; = {g « P,[q].p} and R, = {p < g} be two rule sets. Take,
as an example, the MLP P = (m;, m,) with the main module m; = (P;[],R;) and
the library module m, = (P,[q,],R,). Let My = (M1/@, M3/@, M3/{q,}) and M, =
(M3%/@, M2/, M3/{q,}) be two interpretations for P, where

« Mi/@ =M;/@ =M;/0 =@,
- M3/{q2} = M3/{g2} = {p, g}, and
- Mi/@ = {q}.
Note that M; < M,. When we apply the FLP-reduct to the instantiations, we get

[P =2

fPP[@D™2 =R,

FPP[@DM = fP(P,[@])™2 = R,
FP@[{g}DM = fPP,[{q}DM2 = R, U {g,}.

We have that both M; and M, are models of f PM1 and f PM2, respectively. Note that
only M, is the single answer set of P as MM (f PM1) = MM (f PM2) = {M,}.
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For any reasonable definition of GL-reduct for MLPs, PM1 and PM2, we would have
that the rule g < P,[q].p would have a particular “fixed” instance in the reduct. That
is, in PM1, P,[q].p would refer to p from P,[@], and in PM2, P,[q].p would refer to p
from P,[{q,}]. This means that M is not the minimal model of PM2 anymore, and we
get that M; and M, are both answer sets of P.

This shows that the FLP semantics is a reasonable choice and that the GL-transform
is insensitive to positive loops in the modular setting.

3.3 Basic Semantic Properties

We now consider some properties of modular nonmonotonic logic programs. Obvi-
ously, they conservatively generalize ordinary logic programs.

Proposition 3.2 (Conservativity)

Let R be an ordinary logic program. Then, M is an answer set of Rifft M = (M,/@ = M)
is an answer set of the MLP (m,), where m; = (P;[],R) is a main module and P; is a
module name.

Proor This proposition can be easily seen as the GL-reduct RM is equivalent to FLP-
reduct f (m;)(P;[@])MC, since there is only one context C = {P;[@]}. O

Some well-known properties from standard answer set programming carry over to
the semantics of modular logic programs. This is of avail not only to encompass un-
derlying intuitions, but also for characterizing computational aspects. Two straight-
forward consequences from the definition of FLP-reduct are the following.

Lemma 3.3
IfME fPM’C for some context C for M, then M E P.

ProoF Let M E fPMC for some context C for M. Thus, M, P;[S] E f P(P;[S])MC for
all P;[S] € VC(P). We show now that for all P;[S] € VC(P), M F I,py(P;[S]). Con-
sider P;[S] & C, then by definition we get that f P(P;[S)MC = I ,p)(P;[S]). Hence,
M, P;[S] E fP(P;[SD™C implies M E Irp)(Pi[S]). In case P;[S] € C, the FLP-reduct
is defined to be f P(P;[SMC = {r € I ,p)(Pi[S]) | M, P;[S] F B(r)}. Since M, P;[S] F
fP(P;[SDHYC, we can deduce that M, P;[S] E r for all rules r in f P(P;[S])MC. Now let
r € Iy p)(Pi[S]) such that r & fP(P;[S D™-C. By definition of FLP-reduct we derive
M, P;[S] ¥ B(r), and thus M, P;[S] F r. Therefore, all r € I;,(p)(P;[S]) are satisfied at
P;[S] by M, and the result follows. O

Lemma 3.4
IfM E P, then M E f PM'C for any interpretation M’ and context C.

64



3.3. Basic Semantic Properties

Proor Let M E P. By definition, M E I(gr(P)) and for all P;[S] € VC(P), M E
Irp)(Pi[S]). Now let M’ be an interpretation of P and C C VC(P) be a context. We

have to show that M E f P(P;[S SHM"C for all P; i[S] € VC(P)
Consider P;[S] ¢ C, then by definition f P(P;[S [SPW'C = gr@)(Pi[S]). From M F P

we derive M F Igr(P)(P [S]). Hence, M E f P(P;[S DM€, For the case P;[S] € C, by
definition f P(P;[S DM€ = {r € Iypy(Pi[S]) | M, P;[S] F B(r)}. Hence, we have that
the FLP-reduct f P(P;[S M€ ¢ Irp)(Pi[S]). Since M F I,,p)(P;[S]) we conclude
that M E fP(Pi[S])MI’C. Hence, for all P;[S], we have that M E fP(Pi[S])MI’C, and
thus M E fPM':C, 0O

Consequently, we obtain that answer sets are minimal models of P.

Proposition 3.5 (Minimal models)
If M is an answer set of P with respect to context C, then M € MM (P).

ProoF Let M be an answer set of P with respect to C. Then M € MM (f PM’C), which
implies that M is a model of P by We prove that it is a minimal model
of P. Towards a contradiction assume that M ¢ MM (P). Then, there exists M' < M,
such that M’ F P. By we conclude that M’ F f PM-C. However, this is a
contradiction to M € MM ( f PM’C). Therefore, M is a minimal model of P. O

Furthermore, the semantics is a proper refinement of a naive semantics that would
require stability with respect to all possible module instantiations disregarding their
relevance. This is a simple consequence of the following property.

Proposition 3.6 (Context refinement)
If M is an answer set of P with respect to context C C VC(P), then M is an answer set
of P with respect to every context C' C C for M, i.e.,, V(CGp(M)) C C’' C C.

Proor Towards a contradiction, assume that M is an answer set of P with respect to
context C, but not with respect to context C’ for M, V(CGp(M)) C C" C C. Since
M E P, we conclude that there exists M’ < M, such that M’ E f PMC' We prove
that M’ E f PMC. Consider any P;[S] € C. If P;[S] is in C’, then fP(P;[SP)MC =
f P(P [ DMC’ | otherwise fFPPSDYC C fPP[SDHW '€’ Therefore, in both cases
M’, P;[S] E fP(P;[S]M:C" implies M’, P;[S] E r for all r € fP(P [SHM-C. This proves
that M’ |= fpM C. and since M’ < M, this contradicts the assumption that M is an
answer set of P with respect to context C. Hence, M is an answer set of P with respect
to context C’ as well. O

Finally, it would be appreciated if we would have a syntactic property that face no
inconsistency in the scope of instantiations that are relevant to them. Let ord(P) denote
the result of deleting from an MLP P every rule that contains some module atom. If
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V(CGp(M')) C C for all M’ < M such that M' E f ord(P)M’C, i.e., each decrease of M
to a model M’ of the ordinary rules in the reduct does not lead to a call of an instance
outside the scope C then we would have a safe scope that gives us the desired property,
but this is difficult to check and thus a computationally hard problem.

From now on, we do not consider contextual reducts of MLPs P and focus on the
case where the context ranges over the whole set of value calls VC(P).
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Nonmonotonic Logic Programs

EMANTIC PROPERTIES of MLPs provide the basis to find attractive features
like lower computational complexity, which can range from P-complete to
2EXP-complete in general. We will postpone the concrete elaboration of
details on the computational complexity landscape of modular nonmono-

tonic logic programs to the following Chapter[5] and concentrate in this chapter on the
inspection of several program classes that have a unique model property.

The first class of such programs are Horn Modular Nonmonotonic Logic Programs,
which will be defined in We will show that they possess a canonical answer set,
which equals their unique minimal model, as models of Horn MLPs are closed under
model intersection.

Then, we will look into bottom up fixed-point computation for Horn programs in
and define an appropriate monotone and continuous operator Tp for Horn MLPs
P, such that applying the[Kleene Fixed-Point Theorem|establishes that the least fixpoint
of Tp gives us the unique answer set of P.

In we will define stratified MLPs, which extend Horn MLPs, and show that
such programs have a unique answer set that can be computed in w steps for the limit
ordinal w. To this end, we will define an appropriate notion of program stratification
and define the T} operator, which provides the means for iterated fixed-point compu-
tation of the answer set for stratified MLPs.

4.1 Horn Modular Nonmonotonic Logic Programs
Recall that an MLP P is called Horn if each module of P only consists of Horn rules, i.e.,

rules whose body consists only of positive (module) literals and one atom in the head.
Obviously, answer sets coincide with the naive semantics if V(CGp(M)) = VC(P) for
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all interpretations M of P, in particular, when all modules are main. Moreover, also for
positive MLPs the semantics coincides with the naive semantics. Just like in ordinary
logic programs, it behaves like the minimal model semantics in absence of negation.

Proposition 4.1 (Minimal models in positive MLPs)
Let P be positive. Then, the answer sets of P coincide with MM (P).

Proor According to [Proposition 3.5, every answer set of P is a minimal model of P.
We prove the converse direction for positive P. Let M € MM (P). Then, by[Lemma 3.4
M E fPM. Towards a contradiction assume that there exists M’ < M, such that M’ E
fPM. Then M, P;[S] E I,p)(P;[S]) for all P;[S] € VC(P) \ V(CGp(M)). Moreover,
if P;[S] € V(CGp(M)), then M’, P;[S] E fP(P;[SM and M, P;[S] ¥ B(r) for all
r € I,m)(Pi[SD\ fP(P;[SDM. Therefore, we conclude that M’ E I(P), i.e, M’ E P.
Since M’ < M, this contradicts the assumption that M € MM (P). Hence, M is an
answer set of P. (N

By monotonicity of all module instances, one can easily show that the models of a
Horn MLP P are closed under a suitable notion of intersection.

Definition 4.1 (Intersection).
Given two interpretations M and N of the MLP P = (my, ..., m,,), let their intersection
be the interpretation denoted M N N such that

(MNN)/S = [ (Mi/S' ANy/S")
S’'2S

for every S C HBP|qi andi=1,...,n.

Thus, the intersection M N N builds a component-wise intersection for all supersets S’
of input S. Note that the intersection reduces to (M N N),/S = M;/SNN;/Sif S C S’
implies M;/S C M;/S" and N;/S C N;/S’. This generalizes the usual intersection of
Horn logic programs for MLPs with empty inputs, as in this case the condition S’ 2 S
requires that S = §" = @ and thus (M N N),/@ = M;/@ N N;/Q.

Based on intersection, we can prove the following statement.

Proposition 4.2 (Model intersection)
Suppose M F P and N F P, where P is Horn. Then M NN F P.

Proor Towards a contradiction, assume M E P and N E P, but M N N ¥ P. Hence,
there exists some P;[S] € VC(P) and some rule r € I .p)(P;[S]) such that M N
N, P;[S] E B(r) and M NN, P;[S]| ¥ H(r). By definition,

(MAN)/S = [ (Mi/S' ANy/S")
S’'2S
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and as H(r) is an ordinary atom, without loss of generality H(r) ¢ M;/S* for some
S* D S, ie, M,P;[S*] ¥ H(r). However, for every ordinary atom a € B(r) it holds
that M, P;[S*] F a. We show that also for every module atom o = P;[p].o(c) in B(r),
M, P;[S*] F a holds.

Let S, = (M N N),/S|, be the input value of a in P;[S]. AsMNN, P;[S] F a,0(c) €
(Mn N)j/Sp holds. Now let S5 = (M N N),/S*|, be the input value of o in P;[S*]. Tt

holds that S*|,, 2 S|p; hence, by definition of M N N, MJ~/S*|P oM mN)J./S|p; the

lp 2
latter means that o(c) € M;/S*|,, and hence M, P;[S*] F a.
In summary, this shows that M, P;[S*] F B(r). From M E P, it follows that

M, P;[S*] F H(r), which is a contradiction. O

IProposition 4.2| generalizes for any collection M of models for P such that

( N MnN)I:P.

M,NeM

As a consequence, a Horn MLP has a canonical answer set. In the following, we say
that a given model M of an MLP P is called least model iff M < N for all models N of P.

Corollary 4.3 (Canonical model)
If P is Horn, then it has a unique answer set, which coincides with its least model.

4.2 Fixed-Point Characterization

Like for ordinary programs, we can compute the answer set of a Horn MLP by means
of a bottom up fixed-point computation. With this end in mind, we provide formal
definitions from lattice theory next (Gierz et al.,[2003).

Definition 4.2 (Partially ordered set).
A partial order is a binary relation < over a set V' that satisfies for all a,b,cin V'

« a < a (reflexivity);
« ifa < band b < a, then a = b (antisymmetry); and
« ifa < band b < c, then a < c (transitivity).
A set V with a partial order < is called partially ordered set (V, <).

Definition 4.3 (Lower and upper bounds).

A lower bound (respectively, upper bound) of a subset W of a partially ordered set (V, <)
is an element a of V such that for all x € W, a < x (respectively, a > x). A lower
bound (respectively, upper bound) a of W is called greatest lower bound (respectively,
least upper bound) of W if for all lower bounds (respectively, upper bounds) y of W in
V,y < a (respectively, y > a).
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Definition 4.4 (Lattice).
A complete lattice is a partially ordered set (V, <) such that each subset W C V has a
least upper bound lub(W) and a greatest lower bound glb(W).

For our purposes, the partially ordered set (V, <), where V is the set of all MLP
interpretations of a program P and < is defined as in is a complete
lattice. An operator on a complete lattice (V, <) is a mapping T: V — V.

We can now define an operator for Horn MLPs, which is used for fixed-point com-
putation.

Definition 4.5 (Immediate consequence operator for Horn MLPs).
Given a Horn MLP P and an interpretation M of P, we define the operator Tp(M)
componentwise as follows:

To(M) = (Tp(M)y 5, | Pi[S] € VC(P))
where
Tp(M)p, 1) = Mi/S U {H(r) | r € Iyp)(Pi[S]) and M, P;[S] E B(r)} .

The Tp operator for a Horn MLP P is the inflationary variant (Abiteboul et al.,1995)
for the Tp operator for ordinary Horn programs P (Emden and Kowalski, 1976; Lloyd,
1987), and generalizes Tp in order to take module input into account. Where T'p is de-
fined for Herbrand interpretations, Tp is defined for interpretations over MLPs P. The
main distinction is to introduce module instantiations into its definition and the point-
wise application of Tp, essentially splitting Tp based on value calls P;[S] € VC(P).

In the following, we will show that Tp is a monotone and continuous operator. We
start with the former property and define monotone operators.

Definition 4.6 (Monotone operators).
An operator T: V — V on partially ordered set (V, <) is monotone, if for all x,y € V,

x < yimplies T(x) < T(y) .

Proposition 4.4 (Monotonicity)
The Tp operator for a Horn MLP P is monotone.

Proor Let M and N be interpretations for P such that M < N. We show now that
Tp(M) < Tp(N). Without loss of generality, let M;/S C N;/S for a value call P;[S] of
P, and let M;/T = N/T for all value calls P;[T] # P;[S]. We get that

{H(r) | r € L) (P;[S]) and M, P;[S] E B(r)} C
{H(r) | r € Ipyp)(Pi[S]) and N, P;[S] F B(r)} ,
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as P is Horn and M;/S C N;/S. Therefore,

M;/SU{H(r) | r € I (Pi[S]) and M, P;[S] E B(r)} C
Ni/SU{H(r) | r € I,p)(Pi[S]) and N, P;[S] F B(r)} ,

and this implies that Tp(M) < Tp(N). O

Monotone operators enjoy useful fixpoint properties, such as the following.

Knaster-Tarski Theorem (Tarski, 1955)Any monotone operator T on a complete lat-
tice (V, <) has a least fixpoint

Ifp(T) = glb(fx € V' | T(x) < x}) .

To show that Tp is also continuous, we need to define continuous operators. We
start with directed sets of partially ordered sets.

Definition 4.7 (Directed sets).
Given the partially ordered set (V, <), we call a nonempty subset W C V directed, if
for each pair x,y € W there exists some z € W such that x < zand y < z.

The least upper bound of a directed set W is contained in W.

Lemma 4.5
Let (V, <) be a partially ordered set and W C V. If W is directed then lub(W) € W.

Proor Towards a contradiction, assume that lub(W) & W. From lub(W) being an
upper bound, we can infer that there must exist x,y € W with x < lub(W) and
¥y < lub(W) such that x £ y and y £ x and there is no z € W such that x < z and
¥y < z. Hence, x and y are two upper bounds in W. Then, by W being directed, we have
that for all u,v € W there exists g € W such that u < z and v < z. Now both x and
y do not have a z in W such that x < z and y < z, which contradicts our assumption
that lub(W) ¢ W. O

Definition 4.8 (Continuous operator).
An operator T: V — V on a complete lattice (V, <) is continuous, if for every directed
set W CV,

T(lub(W)) = lub(T(W)) ,

where T(W) ={T'(x) | x € W}.

Intuitively, directed models converge, as we can build a chain My < M; < ---
Note that continuous operators are also monotone.
The following Lemma is useful for proving that Tp is a continuous operator.
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Lemma 4.6

Let P be a Horn MLP, let W be a directed set of interpretations for P, let P;[S] € VC(P),
and let B = {by, ..., b,} be a set of atoms. Then, lub(W), P;[S] E B iff M, P;[S] E B for
some M € W.

Proor (=) Let lub(W), P;[S] E B. By we obtain that lub(W) € W and
thus we immediately get that M, P;[S] F B for some M € W.

(<) Let M, P;[S] F B for some M € W. We have that N < lub(W) for all N € W, and
thus M < lub(W). Hence, lub(W), P;[S] E B. O

We can now show the following.

Proposition 4.7 (Continuous operator)
The Tp operator for a Horn MLP P is continuous.

Proor Let W be a directed set of interpretations, and let P;[S] € VC(P). We show
that Tp(lub(W)) = lub(Tp(W)). Then,

Tp(lub(W)), Pi[S] F a
< a < by,...,b, € I5p)(Pi[S]) and

lub(W), P;[S] E b forj € {1,...,n} by Definition 4.5
< a < by,...,b, € I5p)(P;[S]) and for some M € W,

M, P;[S] E bj for j € {1,...,n} by [Lemma 4.6]
< Tp(M),P;[S] E a for some M € W by [Definition 4.5]
< lub(Tp(W)), P;[S] F a by Definition 4.4] . O

A stronger Theorem than [Knaster-Tarski Theorem| holds for continuous operators.

Kleene Fixed-Point Theorem (Kleene, 1952)Any continuous operator T on a com-
plete lattice (V, <) has a least fixpoint

Ifp(T) = lub({T* | i > 0}) ,
where T® = glb(V) and T'+! = T(T%), for all integers i > 0.

Since the Tp-operator is continuous, it has a least fixed-point Ifp(P) that results,
starting from the empty interpretation My with M;/S = @ for every P;[S] € VC(P),
in w steps, i.e., lfp(P) = Tp1,,(Mg).

Lemma 4.8
An interpretation M is a pre-fixpoint of Tp iff M is a model of P.
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ProOF (=) Let Tp(M) < M. For all P;[S] € VC(P) and all r € Iy,p)(P;[S]), it holds
that M, P;[S] F B(r) implies M, P;[S] F H(r). Thus, M k r for all rules r appearing in
I(P) and so we can conclude that M is a model of P.

(<) Let M be a model of P. Thus, M F r for all r € Ip)(P;[S]) and all P;[S] €
VC(P), and thus for any r in Ip(P;[S]), M, P;[S] E B(r) implies M, P;[S] F H(r).
Hence, Tp(M) < M. O

We obtain the following result.

Proposition 4.9 (Least fix point)
For a Horn MLP P, lfp(P) is the unique answer set of P.

Proor Since Ifp(P) = Tp1,(Mg) is a fixpoint of Tp, it is also a pre-fixpoint and by
it is a model of P. We show now that M = Ifp(P) is also the least model
of P. Let N be an interpretation such that M < N and let MK = Tp1 Mg) forallk > 0.
We show that if N E P then M! < N for all integers i > 0. We proceed by induction
on i. In the base case, we set i = 0 and obtain that M° = Mg, hence M° < N. For the
inductive step, let i > 0 and let M} < N be our inductive hypothesis. We show now
that MI*1 < N. By definition, MI*! = Tp1,,,(Mp) = Tp(Tp1,(Mp)) = Tp(M'), and
so we derive M! < Mi*!. From M being a fixpoint of Tp, we conclude that M} < M
and Mit1 < M. As a consequence of M < N, we can now infer Mitl < N, what was
to be shown. O

4.3 Stratified Modular Nonmonotonic Logic
Programs

A useful class of ordinary logic programs are called stratified logic programs, which
are normal logic programs that forbid recursion over negative literals (Apt et al., 1988).
Stratified programs extend Horn programs: both enjoy having a unique model that can
be computed by iterated application of a suitable operator, but unlike Horn programs,
stratified programs do allow a “safe use” of negation in the body. For this purpose,
Apt et al. (1988) define stratifications for normal logic programs P, and if there exists
a stratification for P, then P is called a stratified program.

It is thus worthwhile to define stratified MLPs with similar properties as stratified
ordinary logic programs. Necessary to that end is to define stratifications for normal
MLPs. We will thus generalize this concept as follows. Intuitively, the usual notion
of the dependency graph of a program is extended by nodes standing for the module
atoms appearing in P, which serve to take care of the dependencies between input to
the module and module output. Furthermore, we assume that each predicate occurs in
ordinary atoms of at most one module.
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Definition 4.9 (Dependency graph).

Let P = (my,...,m,) be an MLP. The dependency graph of P is the following directed
graph Gp = (V, E). The vertex set V contains all p € P U &, with p appearing some-
where in P, and £ is the set of module atoms in P. The edge set E is as follows:

« Letr € R(m;). There is a x-edge p »* q in Gp, * € {+, —}, if one of items
holds:
1. p(ty) € H(r) and q(t,) € B*(r);
2. p(t)),q(ty) € H(r) and ¥ = —; and
3. p(t;) € H(r) and q is a module atom in B*(r).
« Let a € & be of the form P;[p].o(t) in R(m;). There is a +-edge a —* binGp if
one of items holds:
4. a=aand b =o;
5. a = a and b appears in q; of Pj[q;]; or
6. a = q, and b = p,, where q, appears in q; of P;[q;] and p, appears in p.

Based on the dependency graph of an MLP, we can now defined stratified MLPs.

Definition 4.10 (Stratified MLP).
We say that an MLP P is stratified if no cycle in Gp has —-edges.

As for ordinary logic programs, given a stratified MLP P, there exists a labeling
function [ from HBp to the nonnegative integers, such that I(a) > I(8) if a »* b
in Gp, and l(a) > I(B) if a >~ b in Gp, where a = a(t), or a € & and a unifies with
a, respectively for § and b.

Let k be the maximal value assigned by a particular such labeling function, and let
for 0 < i < k the set St; = {a € HBp | l(a) = i} be a stratum for P. Then a partitioning
Sty, ... , Sty of HBp is a stratification.

Example 4.1 Let P = (m;, m,, m3) be an MLP with modules

Pl[]: al (—notbl
¢, < Pslay].a;

Pz[]: a2 «— nOtPl.bl
P;[qgs]: as < qs
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The unique answer set M is determined by

M,/@ ={a;,c1} M,/@ = {a,} M;/@ =@
M;/{gs} = {as, g3}

The dependency graph of P is Gp = (V,E), where V = {a;,b;,c1,0a,,a3,q3} and E
consists of the edges

a; >~ b
¢ =7 Ps[a;].a;3
Ps[a;).a3 =% a;
Ps[ai].a3 =% g3
:-" g
a, >~ P;.b;
P,.b; -1 b,
as =" qs

We have a stratification Sto = {bl’Pl'bl}’ Stl = {al, Cl,Pg[al].a3, a, qs, a3} of HBP

Towards an iterated fixed-point computation of answer sets for stratified MLPs, we
define the following operator.

Definition 4.11 (Immediate consequence operator for stratified MLPs).
Given a normal MLP P, a subset L of HBp, and an interpretation M of P, we define the

operator T5(M) as the operator Tp(M), where TP(M)P-[S] has been replaced with
1

TEM), o1 = Mi/SU{H(r) € L | r € I;ypy(P;[S]) and M, P;[S] F B(r)} .

Pi[S]

Thus, compared to Tp, the Ts-operator has a certain set L as an additional param-
eter used to project those atoms from HBp that belong L, ie., Tp = TII,{ P and for a
subset L. C HBp, we have T%(M)Pi[s] = M;/S U (TP(M)Pi[S] N L).

By T§1,,(M), we denote the application of T§ in @ steps, starting with M. Fur-
thermore, let M® = My be the empty interpretation, i.e., where M;/S = @& for every
value call P;[S] € VC(P). For any stratification Sty, ..., St;, of HBp such that k is the
maximal value assigned by a labelling function I: HBp — N, we let L; = | St;

and inductively define Mi*! = TIIIi“Tw(Mi), for0 <i<k.

0<j<i

Proposition 4.10 (Stratified answer set)
Let P be normal and stratified. Then MK is an answer set of P, for any stratifica-
tion Sto, veey Stk of HBP
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Proor Let m; = (Pj[q;],R;) be a ground module of P. For a j < k, we denote by
mf = (P,-[qi],le), where le ={r €R;| H(r) € L;}, and by P/ = (m{, s mil)

We show now that M¥ is an answer set of PX (= P). We proceed by induction on j
such that 0 < j < k.

Let j = 0inthe base case. We get by having only a single stratum St that Ipo(P;[S])
is Horn and coincides with Ip(P;[S]). Hence, Tpo(M) = Tp(M) for any M, in particular
Tpo(M®) = Tp(M°). Thus, TpoT,(M°) = Tpt,, (M) = Ifp(P).

Let j > 0 in the inductive step and assume that M/~ lisan answer set of P/~ with
stratification Sty, ..., Stj_;. We first show that M/ is a model of P/ with stratification
Stgy ... Stj. Towards a contradiction, assume that M/ & P/ ie, M/ ¥ I(P/). There is
aruler € I,j(P;[S]) such that M/, P;[S] }# r, hence M/, P;[S] F B(r) and M/, P;[S] ¥
H(r). Since M/~! E P/~ this r must not appear in m{_l, thus H(r) & Lj_;. By
definition of ml] we have H(r) € L;, hence H(r) € L; \ Lj_; and thus H(r) € St;.
Therefore we must have H(r) € Tlfjj (M/~1), which is a contradiction to our assumption
that M/ ¥ PJ. Thus, M/ is a model of P/. _

Now we show that M/ is a minimal model of f PJ(P;[S])™. Towards a contradic-
tion, assume there exists an M’ < M/ that is a model of f PJ(P;[S])™ . Since M/ ! isan
answer set of PJ/~1 with stratification Stos e s Sti_1, there must exist an atoma € M l] /S
such that a ¢ Mlj /S for a particular P;[S], otherwise a would be missing from
MJ~1/S, as MV~ is an answer set for P/~ Hence, a is from L; \Lj_l, thus a € St;.
From M/ = T;j 1 w(Mj ~1) we can conclude that there existsanr € I gr@)(Pi[S]) with
H(r) = a, and since a is from St;, we must have that M/~1 P;[S] E B(r). Now,
M/, P;[S] F H(r), but M', P;[S] ¥ H(r), thus we arrive at a contradiction for M’ being
a model of f PI(P,[SPW. 0O

Example 4.2 (cont’d) Given P from the previous example, we have L, = St; and
L, = Sty U St;. The answer set M = M! can be obtained from M! = T{;lTw(MO).

A further consequence of stratification is that the relevant call graph is unique.

Proposition 4.11 (Stratified call graph)
Let P be a stratified normal MLP and St, ..., St be an arbitrary stratification of HBp.
Then, for every answer set M of P, it holds that

1. V(CGp(M)) = V(CGp(MFK)), and

2. M;/S = Mlk/S, for all P;[S] € VC(P) and any stratification St, ..., St; of HBp.
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Proor Let St), ..., Sté1 and St7, ..., Stg2 be two stratifications for HBp. Observe that for
i < j < #¢; <€, no stratum St; depends on a stratum S; and no stratum St; depends
on a stratum St]’, respectively, which is guaranteed by the definition of Gp.

Following the proof for (Apt et al., 1988, Theorem 11), we can transform both St,...,
Sty and Stg, ..., St;, into a single stratification St, ..., St; by grouping clusters of rules
together; clusters are nonempty subsets of rules in P that are the unions of a maxi-
mal collection of definitions that define relations depending on each other. For this
purpose, one can define a partial order on clusters that order them based on their de-
pendencies. Clusters that are unrelated with respect to this partial order can then be
rearranged while preserving their answer set.

Hence, we get that

U Tll;;HTw(Mi): U TII;i+1Tw(Mi)

0<i<é; O<i<k
and y
U TPl+1 Tw(Ml) — U TPHITCO(MI) .
0<i<é, 0<i<k
Thus, for any stratification the answer set coincide, and both (1) and (2) hold. O

Therefore, answer sets of stratified, normal MLPs coincide on relevant instances.
The answer set obviously is unique if all value calls of VC(P) are relevant, or if all
irrelevant instances have a unique minimal model.
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Computational Complexity of
Modular Nonmonotonic Logic
Programs

HIS chapter discusses the computational costs of MLPs in the propositional
and the nonground settings. We study the complexity of MLPs with and
without module input and provide completeness results for the problem of
deciding whether a ground atom is contained in the unique answer set for

Horn MLPs, and for deciding answer set existence for normal and disjunctive MLPs.
All results are compactly summarized in Tables

The complexity results have been obtained using Turing machine simulations and
bounded domino tiling problems; see also Borger et al. (1997) for an in-detail inves-
tigation on these techniques. Our findings in show that allowing unrestricted
module input in MLPs increases the computational complexity by an exponential fac-
tor already in the Horn case. Similarly, as we show in deciding whether a nor-
mal MLP has an answer set is NEXP-complete even in the propositional case, which
matches the complexity of nonground normal logic programs. As shown in this
holds even for acyclic normal MLPs, i.e., normal MLPs whose call graph is acyclic.
then presents complexity results for general MLPs without restrictions. Propo-
sitional disjunctive MLPs match the complexity of nonground disjunctive logic pro-
grams (NEXPN -complete). In the nonground case, the complexity jumps again by an
exponential factor: nonground Horn MLPs are complete for 2EXP, while normal (re-
spectively, disjunctive) MLPs are complete for 2NEXP (respectively, 2NEXP™F). If we
bound the arities of the input predicates by a constant, then the complexity drops by
an exponential factor and matches that of ordinary logic programs: nonground Horn
MLPs with bounded predicates are complete for EXP, while nonground normal (re-
spectively, disjunctive) MLPs are then complete for NEXP (respectively, NEXPNF),
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MLP P Computing lfp(P) Deciding a € lfp(P)
propositional, empty inputs polynomial time P-complete
propositional exponential time EXP-complete
nonground, bounded predicates exponential time EXP-complete
nonground double exponential time 2EXP-complete

Table 5.1: Complexity of Horn MLPs (« is a ground atom)

MLP P Answer set existence

normal, empty inputs NP-complete

empty inputs »2-complete
normal NEXP-complete
acyclic NEXP-complete
unrestricted NEXPN-complete

Table 5.2: Complexity of answer set existence for propositional MLPs

MLP P Answer set existence

normal, bounded predicates NEXP-complete

normal 2NEXP-complete
bounded predicates NEXPNP-complete
unrestricted 2NEXP™ -complete

Table 5.3: Complexity of answer set existence for nonground MLPs

illustrates the complexity landscape for the studied syntactic classes of
MLPs as an directed acyclic graph, where each node S: C consists of the name S of
the syntactic class on the left and the complexity class C on the right of the colon.
There is an edge from S : C; to S,: C, whenever S; contains S,. Here, N, and N2, for
r € {u, n, h}, denote the classes of nonground MLPs with arbitrary module input (su-
perscript is void) and bounded predicate input (superscript b), respectively, such that
the rule sets consists of unrestricted rules (1), normal rules (n), and Horn rules (h).
For the syntactic classes of propositional MLPs we let P, and P2, for r € {u,n, a, h},
denote the classes of propositional MLPs with arbitrary module input (where the su-
perscript is void) and empty module input (with @ as superscript), respectively, such
that the rule sets consists of unrestricted rules (1), normal rules (n), acyclic rules (a),
and Horn rules (h).

We start with a recapitulation of the most important definitions from complexity
theory in the next section.
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N, : 2NEXPN? 5> N, : 2NEXP 5> N, : 2EXP
NP : NEXPNF > N&: NEXP ———— > NP : EXP
A ' A
P,: NEXPNP 5 P,,: NEXP S P, EXP
P,: NEXP
e ~N N
P2: 3% > P2: NP >P2:p

Figure 5.1: Complexity landscape of Modular Nonmonotonic Logic Programs

5.1 Alternating Turing Machines and Complexity
Classes

This section builds upon results and definitions by Chandra et al. (1981) and Dantsin et
al. (2001). Further material and details on complexity theory is provided by Papadim-
itriou (1994), by Borger et al. (1997), and by Garey and D. S. Johnson (1979).

Some of our results in this chapter rely on alternating Turing machine simulations.
This type of Turing machine can be considered as a generalization of the classical de-
terministic and nondeterministic Turing machine, hence we base our definitions on
alternating Turing machines, and then provide the restrictions necessary for deter-
ministic and nondeterministic machines.

5.1.1 Alternating Turing Machines

An alternating Turing machine (ATM) T is a quintuple (S, Z, 8, Sg, g), where S is a finite
set of states, X is a finite alphabet of input and tape symbols, ¢ is the transition relation,
So € S is the initial state, and g: S — {3, V} is a mapping that assigns each state in S a
state identifier. The transition relation § is defined as

d C(SXZ)X((SU{yes,no}) xZx{-1,0,+1}) ,

where the states yes, no do not occur in S and —1, 0, +1 denote motion directions. We
denote _. € Z to be the blank tape symbol.

We say that T is a nondeterministic Turing machine (NTM) iff for each s € S it
holds that g(s) = 3, and T is called a deterministic Turing machine (DTM), iff it is a
NTM and § is a functional relation over (S X X). Since g is not important for DTMs
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and NTMs, we simply identify them as quadruple (S,Z, 3, y). Thus, an NTM may
be considered to be an ATM without universal states, and a DTM is an NTM whose
transition relation ¢ is functional.

A configuration y of ATM T is a triple (s, w,u) € S U {yes, no} X £* X X*, where s
represents the current state of T, and w and u represent the contents of the tape left
and right from the read-write head on the tape, respectively. Given an input string I,
we call configuration yy = (8¢, , I) the initial configuration of T.

Lety = (s, w, u) be a configuration for the ATM T. If g(s) = V, then y is said to be a
universal configuration, and for g(s) = 3, we say that y is an existential configuration.
We call y accepting if s = yes, and rejecting if s = no. A halting configuration is either
an accepting or a rejecting configuration.

Foran ATM T = (S, %, 6, Sg, 9) and configurations y, ¥’ of T, we call y’ a successor
of y if ¥’ can be reached from y in one step according to the transition relation §. A
computation of T is a sequence of configurations ¥, 71,72, -.. such that for each pair y;
and ¥;41,1 > 0, %41 is a successor of y;.

We can now define accepting and rejecting configurations given universal and ex-
istential configurations. Let y = (s, w, u) be a configuration such that g(s) € {V,3}.
We call y an accepting configuration if y is universal and all successors y’ of y are
accepting, or if y is existential and there exists a successor ¥’ of y that is accepting.
We say that the universal (respectively, existential) configuration y is rejecting if some
successor ¥’ of y is rejecting (respectively, all successors ¥y’ of y are rejecting).

The ATM T accepts input I if the initial configuration y is accepting, and rejects
input I if y, is rejecting. An ATM halts on an input [ if its initial configuration y is
accepting or rejecting. We say that an ATM T decides a language L if T accepts all
strings I € L and rejects all strings I & L.

5.1.2 Complexity Classes

Based on alternating Turing machines, we define now the complexity classes that are
used in our results. For a given function g: N — N, we denote by O(g(n)) the set
of functions {f(n) | Ac,k € N\ {0} such that 0 < f(n) < cg(n) for all n > k}. A func-
tion f: N — N is called a proper complexity functionif foralln € N, f(n +1) > f(n),
and there exists a DTM T'; that for a given input string I such that n = |I| writes ex-
actly f(n) blank symbols ., on the tape and whose computation has length O(n+ f(n))
and touches O(f(n)) tape cells and halts. Let f be a proper complexity function on
positive integers. Let ATIME (f(n)) be the class of all languages that are decided by
some ATM, whose computations halt on input I with length n = |I| in at most f(n)
steps. We define ASPACE (f(n)) to be the class of all languages that are decided by
some ATM, whose computations halt on input I with length n = |I| with at most f(n)
of cells visited. The definitions for deterministic (DTIME (f(n)), DSPACE (f(n))) and
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nondeterministic (NTIME (f(n)), NSPACE (f(n))) resource bounds classes are analo-
gous, but instead of ATMs, they use DTMs and NTMs, respectively.

We can now define the main complexity classes for alternating computations.

ALOGSPACE = ASPACE (log n)

AP = | J ATIME (n¥)

k>0

APSPACE = |_J ASPACE (n¥)
k>0

AEXP = |_J ATIME (2”k>
k>0

AEXPSPACE = |_J ASPACE (2”">

k>0

The deterministic and nondeterministic complexity classes for deterministic Turing
machines (LOGSPACE, P, PSPACE, EXP, EXPSPACE) and nondeterministic Turing
machines (NLOGSPACE, NP, NPSPACE, NEXP, NEXPSPACE) are defined accordingly
using DTIME (-) and DSPACE (+) respectively NTIME (-) and NSPACE (-) instead.

For a language L over alphabet = \ {_} we let L denote its complement language
E\{_D*\ L. A complexity class C has a complementary class co-C defined as the
set{L|L e C}

We define now oracle Turing machines. Let L C X* be alanguage. The computation
of an oracle machine T* with oracle L proceeds like an ordinary Turing machine with an
additional write-only query tape and additional three states qgyery» Qyess Gno- Whenever
T is not in state Qquery the computation proceeds as a standard Turing machine, and
Ti r.na}y also write to the quLery t'ape. L.et I, be thF string writFen on the query tape. If
T is in state gy, then T switches its state either to g, in case I € L, or to g,,
in case I; & L, and then erases the query tape content. Note that we did not fix the
machine type here: whenever T is a DTM, we call TZ an deterministic oracle Turing
machine, and for T being a NTM, we say that TT is a nondeterministic oracle Turing
machine. The time and space resource bounds are defined analogously as in standard
Turing machines, except that additionally the number of steps and required space on
the query tape is taken into account. Let C be any deterministic or nondeterministic
time complexity class, we define CF to be the class of all languages accepted by a DTM
or NTM (whenever C is deterministic or nondeterministic, respectively) with equal
time bound as in C such that the machine has an oracle for language L. For a set of
languages A, we define CA = ULea ct.

The polynomial hierarchy (Stockmeyer, 1976; Wrathall, [1976) consists of complexity
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classes Af) , le , and Hf) recursively defined as follows:

Af =30 =TI =P

p _ p=f
Ajyp =P7

P _ )ig
21 = NP~

b _ 14
Iy, = co-Zji,y

foralli > 0.
Further, we define complexity classes mEXP and mNEXP, for m > 1, as follows.
For n > 0, let "a denote the iterated exponentiation

" 1 n=0,
a=3 -1
al a9 pn>0.

Then
mMEXP = DTIME ((mz)”k>
and

k
MNEXP = NTIME ((mz)” ) .

k k
As an example, set m = 2: then 2EXP = DTIME (22" ) and 2NEXP = NTIME (22” )

which will be used in our complexity results. Note that for m = 1, 1IEXP = EXP and
INEXP = NEXP.

The weak EXP hierarchy (Hemachandra, 1989) consists of complexity classes Zf and
IT{ recursively defined for all i > 0 as follows:

>é = EXP

>P
¢, = NEXP%i
l_[(i3+1 = CO'Z?H

For our purposes, we simply use EXP, NEXP, and NEXP™*. We can also go one level
higher and define a double exponential hierarchy, but instead of EXP and NEXP as
base class, we use 2EXP and 2NEXP instead. We will later show that in general, MLPs
match the complexity class 2NEXPNY.

Next, we define reductions and completeness for complexity classes. We say that
language L, can be reduced to language L, if there is a function f: £* — Z* (called
reduction from L, to L,) computable by a DTM in polynomial time such that for all

84



5.2. Propositional MLPs without Input

LOGSPACE — ¢ — P — ¢ — PSPACE -c - EXP -c - EXPSPACE —c— 2EXP ---
I I I I I

I I I I I
ALOGSPACE -c- AP -c- APSPACE -c- AEXP - c- AEXPSPACE ---

Figure 5.2: Relationships between deterministic and alternating hierarchies

2EXP

EXPSPACE

EXP

PSPACE

P

Figure 5.3: Relationships between complexity classes

strings I € X%, I € L, iff f(I) € L,. Let C be a complexity class and L be a language
from C. We define L to be C-hard ifforall L’ € C, L' can be reduced to L. A language L
is called C-complete if L is C-hard and L € C.

As shown by Chandra et al. (1981), the deterministic hierarchy shifts exactly by
one level in alternating complexity classes, and their relationships to deterministic

complexity classes can be summarized by (Gréadel, 2007). reviews

the relationships of complexity classes used in our results (Papadimitriou, [1994).

5.2 Propositional MLPs without Input

To begin with, let us restrict our attention to Horn MLPs. Considering the propo-
sitional case, if the modules m; = (P;[q;],R;) in P have no input (i.e., q; is void),
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then I(P) has polynomial size and lfp(P) is computable in polynomial time. For arbi-
trary propositional P with no inputs, we can guess and verify an answer set M of P
in polynomial time with an NP oracle. As shown in [Proposition 3.2 MLPs subsume
ordinary logic programs, we thus obtain by known results the same complexity; com-
pare Dantsin et al. (2001). Note that the results here stay the same for stratified MLPs.
Indeed, the lower bounds in this section could have been obtained by reductions from
ordinary logic programs to MLPs with a single module without input. Instead we use
QBF encodings and Turing machine simulations, which we build upon in and
See also the discussion on simulating Turing machines by logical deduction in Dantsin
et al. (2001, Section 4.1).

With slight abuse of notation, for a ground atom « and an interpretation M of P,
we write « € M if a € M;/S for a given P;[S| € VC(P) in the following,.

Theorem 5.1 (Computational complexity of propositional MLPs without input)
Given a propositional MLP P = (P[], Ry), ... , (P[], Ry)),

1. if P is Horn, the unique answer set M = Ifp(P) of P is computable in polynomial
time and to decide whether & € M for a ground atom « is P-complete;

2. if P is normal, to decide whether P has an answer set is NP-complete; and

3. to decide whether P has an answer set is 25 -complete.

Proor or [THEOREM 5.1} ITEM 1| We first show membership in P. Since every interpre-
tation of P is of form M = (M,/@, ..., M,,/@), we have that the least fixpoint of the
Tp operator can be computed in polynomial time: if we exhaustively apply Tp(M;/D),
1 < i < n, we reach the fixpoint after at most (m + 1) - n application steps, where m is
the number of rules in P. Each application of Tp can be done in polynomial time. This
shows that the unique answer set M = Ifp(P) can be computed in time polynomial in
the size of P.

Next we show P-hardness. A language L € P can be decided by a deterministic
Turing machine T in polynomially many steps. We can translate each instance I of L
with m = |I| to a Horn MLP with empty input modules that encodes T. Let P =
((P1[],Ry)). The rules in R; are the initialization facts, transition rules, inertia rules,
and accept rules from Dantsin et al. (2001, Section 4.1). We have now that Tp1,(My) =
M, for My = (M,/@) = (@) and that M,/@ in Tp1,(My) consists of all initialization
facts from R. The least fixpoint lfp(P) is reached at Tp1,,, ,(Mg) and contains accept
in M,/@ iff T accepts I in at most m steps. This is analogous to Dantsin et al. (2001,
Lemma 4.1). The reduction can be done in logarithmic space in the length of I (see
proof of Dantsin et al. (2001, Theorem 4.2)), thus our P-hardness result follows. We
obtain that « € M is P-complete. O
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Proor oF [THEOREM 5.1} ITEM 2| Membership in NP follows from the following obser-
vation. The set of value calls VC(P) = {P,[@], ..., P,,[@]} contains only empty input

sets, thus for every interpretation M of P, we have that M}/ ((Mi/ @)|8) = My /@ for

every edge Pi[@] — P;[@] in CGp. The reduct f PM thus can then be computed in
time polynomial in the size of P by just applying the FLP-reduction in all f P(P;[@])™.
An algorithm that checks whether P is consistent works as follows. We first guess
an interpretation M = (M,/@, ..., M,,/@), which can be done in time polynomial in
the size of P. Then we compute f PM and check whether {M} = MM (f PM) in time
polynomial in the size of P (negated atoms that survive the reduction f PM cannot be
in M, thus this amounts to checking a positive program). Hence, checking consistency
is in NP.

Next we show NP-hardness, which is shown similar to A language L € NP
can be decided by a nondeterministic Turing machine M in polynomially many steps.
We can translate each instance I of L with m = |I| to a normal MLP with empty input
modules that encodes M. Let P = ((P;[],R;)). Similarly to the hardness proof for
ordinary ASP, the rules in R; are the initialization facts, transition rules, inertia rules,
and accept rules used in the proof of Dantsin et al. (2001, Theorem 5.7). Now every
answer set M = (M,/@) of P must contain accept, since the transition rules encode
the nondeterministic choice of the NTMs M state transition. Analog to Dantsin et al.
(2001, Theorem 5.7), M corresponds to accepting computations of M in at most m steps.
The reduction can be done in time polynomial in the size of the instance I, thus our
completeness result follows. O

Proor oF [THEOREM 5.1} ITEM 3| We start with showing membership in 25 . As shown
before in VC(P) = {P,[D], ..., P,[@]} and the reduct f PM can then be com-
puted in time polynomial in the size of P by just applying the FLP-reduction in all
fP(P;[@]M. An algorithm that checks whether P is consistent works as follows. We
first guess an interpretation M = (M;/@, ..., M,,/@) and compute f PM in time poly-
nomial in the size of P. Then, we check whether M is a minimal model with respect
to <, i.e., there is no interpretation N < M that satisfies f PM. This check can be done
using a co-NP oracle, thus by NP®™ = NP™? the 34 upper bound follows.

The hardness part can be shown similar to Let ¢ = AXVYY be a QBF,
where 1 is in 3-DNF. The problem of deciding whether ¢ is valid is a £ -complete
problem. We can reduce this problem to answer set existence of propositional MLPs
without input analog to the reduction given in the proof of Eiter and Gottlob (1995,
Theorem 3.1). Instead of a DLP P we use an MLP P = ((P[],R)) such that R contains
the rules of P. The reduction generates P in time polynomial in the size of ¢ and
works as expected: ¢ is valid iff P has an answer set. Thus we have a 5 lower bound
for and therefore deciding whether P has an answer set is 25 -complete. [
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5.3 Propositional MLPs with Input

The results in generalize to the case where the module inputs in P have bounded
length, i.e., |q;| < k for some constant k, as I(P) and M have polynomial size. For unre-
stricted inputs, however, I(P) and M are exponential and we get a respective blowup.

The hardness parts are shown by encodings of Turing machines, which adapt con-
structions by Dantsin et al. (2001). Roughly speaking, we use modules with three
groups of input predicates of the form P[c, ¢’, t], where ¢ and ¢ amount to tape cell
indexes, and t to a time stamp during a computation. With |¢| = |¢’| = |t| = €, we can
model 2¢ cells and 2¢ time stamps. Further atoms store the cell contents, state of the
machine, and the position of the read-write head. The transition function is encoded
by rules with access to the contents of neighboring cells, which is realized by respec-
tive (recursive) module calls; neighboring cells and time stamps are computed using
local rules. Inertia rules are used to keep the tape content for cells that have not been
used in a computation step. This process requires to scan for the current position of the
read-write head relative to an unused position on the tape. Since we can have 2¢ cells,
adding all possible cell positions in relation to the current head position would blow
up the encoding and thus the reduction would not be polynomial. Using cell positions
c and ¢’ as module input and their relative position ¢ < ¢’ or ¢’ < ¢ on a grid, we can
encode inertia rules in the required reduction time bounds.

Note that the Turing machine encodings given in this section are incremental, i.e.,
we build upon the Turing machine simulation of the syntactic class with lower com-
plexity and reuse them in the MLP fragment with higher computational costs.

We can therefore state our next result.

Theorem 5.2 (Computational complexity of propositional MLPs with input)
Given a propositional MLP P = (P[q1], ..., Px[q,])s

1. if P is Horn, the unique answer set M = Ifp(P) of P is computable in exponential
time and to decide whether &« € M for a ground atom « is EXP-complete;

2. if P is normal, to decide whether P has an answer set is NEXP-complete; and

3. to decide whether P has an answer set is NEXPN*-complete.

In the following, we will now prove this result for every item.

5.3.1 Proof of Theorem 5.2| [item 1]

We first show membership in EXP. Since |HBp| is linear in the size of P, we have that
every interpretation M of P consists of at most n - 2Bl components, thus the least
fixpoint of the Tp operator can be computed in exponential time: if we exhaustively
apply Tp(M;/S), 1 < i < nand S C HBp|y, we reach the fixpoint after at most
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(m+1)-n-2/HB»l application steps, where m is the number of rules in P. Each application
of Tp can be done in polynomial time. This shows that the unique answer set M =
Ifp(P) can be computed in time exponential in the size of P.

We show now EXP-hardness. Given a deterministic Turing machine T which halts
in less than N = 2m" steps for an input I such that m = |I|, we can simulate T by an
MLP consisting of three modules. Without loss of generality the encoding considers
Turing machines without input. Since we require that the running time is exponential
in the length of the input, we can adapt the transition function § of an arbitrary Turing
machine T with respect to I, and encode the input in a transition function &’ by writing
down the input as a first step before the actual computation is done.

Turing machines that run in exponential time can potentially touch exponential
many tape cells at exponential many different time points. For that reason, we cannot
simply encode time points and cell positions in the atoms, but have to encode time
instants and positions as binary numbers and use a counter to address the correct
configuration of the machine. We can do this by using the input mechanism of MLPs
and encode the bits of a nonnegative number n € {0, ..., 2—1}asa sequence of atoms
by, ..., by, by, ..., b_g (short b). If b; is true in an interpretation then the i bit of nis 1 and
if b_J is true then bit j of n is set to 0; intuitively, b; and b; must have complementary
truth values in a model. This way we can represent 2¢ positions and time points.

In the following, let T = (S, Z, 8, 5) be a deterministic Turing machine and let I be
an input string encoded in 6. We use propositional atoms listed below in our modules
to encode the states and the tape content of T during the computation. Note that we
do not need to add indexes for cell positions and time points in the atoms below, as
the formal input parameters to the modules are used to encode cells and time points.
This way, the value calls can be identified as cell-time reference to Turing machine
configurations. Let m = |I| be the length of I, ¢ = mk for some constant k, and
N = 2¢ be the time bound for T.

init, init, and start mean that in a run of T we are at time point 0, in between time
points 1,..., N — 1, and at the beginning of the tape, respectively;

at time point ¢, the atoms ¢;” and ¢;” represent the i'" bit of time point ¢ — 1;

+ ot

at cell ¢, the atoms ¢, ? and¢;", ¢;” represent the i bitofc—1andc+1, respectively;

at cell position ¢’, which is used to have a relative position for tape cell ¢, the atoms

11— /—

c¢j”,cj” and c;*, c;* represent the i bit of ¢’ — 1 and ¢’ + 1, respectively;

atom s representing that at time point ¢, the machine is in state s € S;

atom o indicates that symbol o € X is written on cell ¢ at time point ¢ on the tape of
T;
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atoms o'~

time point

N-1 T
(c=1t+1)  (ct+1)  (c+1,t+1)
NP
o(c,t)
xy‘T(’)\z
(c-1jt-1)  (c,t=1)  (c+1,t-1)

0~ — cell position
0 N-1

Figure 5.4: Turing machine configurations on the cell-time grid

1 g’*1 encode that symbol ¢’ € X will be written on cellc — 1 or ¢ + 1 at

time point £ whenever the read/write head is at ¢ on the tape of T for transitions with
motion directions from {—1, +1};

head has the intuitive meaning that the read/write-head is at cell position c at time

point ¢;

m~1, m® m*! means that the read/write-head at cell position c at time point ¢ moved
to the left, stay at the current, or moved to the right position from time point ¢ — 1,
respectively;

atoms <, =i, and # that represent for two cell positions ¢ and ¢’ whetherc < ¢’, ¢ = ¢/,
or ¢ # ¢’ hold, respectively; and

th

e atom accept, which means that T accepts input I.

Note that the atoms o’~!,o’*! capture that when we move from cell ¢ at time

point t — 1 to ¢ + d at t for motion directions d € {—1,+1}, the symbol ¢ on c at
t — 1 under the read/write head will remain and, depending on direction d, only the
successor/predecessor tape cell will get a new symbol at time point .

Next we define the MLP D(T,N) = (mll) , m?, ms, my) that, given DTM T and time

bound N, simulates computations of T. Intuitively, the main module mP computes

in

accept the acceptance of I, while library module m2 encodes transition rules for &

(and therefore I). The library modules m; and m, help m2 with the computation of
successors and predecessors of cell positions and time points, and for computing a
linear order < for cell positions.

visualizes possible configuration changes of a Turing machine based

on cell positions and time points using appropriate successor and predecessor con-
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t=i+1

@/

67/ ( Y To. Tog t
/%@  Op Ge %a /

Figure 5.5: Turing machine motions in the cell-time-cube

figurations of cell c at time t. It highlights cell-time point (c,t) and shows possible
predecessor and successor positions with thick arrows depending on the motion di-
rections —1, 0, +1 of the read/write head: the computation may have come from cell
position ¢ —1, ¢, or from ¢ +1 at the direct predecessor time point £ —1 in the past, and
looking into the future, we may continue with our computation at the direct successor
time point ¢ + 1 at cell position ¢ — 1, at ¢, or at ¢ + 1.

But using a two-dimensional grid as intuition for the Turing machine encoding
is not enough. In order to capture that cell contents remain unchanged on the tape
whenever they are not involved in a state transition, we use reference cell positions ¢’
that are used to scan for the head position for all positions ¢ such that ¢ < ¢’—max(d, 0)
and ¢’ —min(d, 0) < ¢ depending on the motion directions d € {—1, 0, +1} of the head.
Whenever (c¢’, ¢') does not contain the machine head, we copy to position (c, ¢") at time
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point ¢ the symbol o from the direct predecessor time point ¢ — 1. Then, we copy the
tape contents of (c,c + 1) and (c,c — 1) at current time point ¢, thus distributing cell
contents over the whole grid and thus filling the computation tape along the diagonal.
[Figure 5.5 illustrates this process. At time points t =i —1,i,i + 1, we span a grid
of cell positions (c,c’). The cells along the dotted lines store the same tape content,
while the actual computation takes place in the diagonal of each grid, indicated by
filled circles. At time point ¢ = i we have a cell highlighted as fish-eye bullet that has
three incoming and outgoing red edges. Whenever the machine head is located on this
position, we may have come from three configurations shown as black circles located
along the diagonal at time point = i — 1. The tape content at ¢ = i depends on the
motion direction: for motion 0, we have o, = 0, and g, = 0., for motion —1, we have
04 = 04 and 0}, = 0, and for motion 4+1 we have 0, = 0}, and 0, = 0,; in any case, o4
at t = i remains unchanged. In the next step, the machine can only continue to three
configurations in the diagonal of time point ¢ = i + 1. The computation is analog to
but this time, the grid of configuration covers all configurations located in
the diagonal for each gridt = 0, ..., N — 1. For our Turing machine encoding, both cell
positions ¢ and ¢’ and time point ¢ will be given as formal input parameters to module
my.

We setup the modules of D(T, N) = (mP, m?, m;, m,) as follows.

The main module mP = (dtm[], RP), where R? is the set of rules

0, <

Op <

accept < conf|o,0,0].yes

(5.1)
(5.2)

Note that o = 0y,...,0.,0q,...,0p, i.e., input 0, 0, 0 represents the triple (c,c’,t) =
(N—1,N—1,N-1) in binary, since for i = 1,...,€ we must have o0; true and o0; false in
all models.

The library module

where RY consists of the following groups of rules:

D _ — — r - - - D
My = (Conf[Cyy s CpsClyuee s Coy Cly v s Cpy Clswen s Cps b1y wen s Lo 15 e s Lo, RS

offsetrulesfor1 <i < ¢:
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C:

) —
C;

t; < op[t].b;

i

¢ < oplcl.bj

¢t < oplcl.by
i~ < ople']bf

« op[c'].b

(5.3)

(5.4)

(5.5)



5.3.1. Proof of[Theorem 5.2|, |item 1|

auxiliary rules (distinguish initialization phase from computation phase):

init < ty,...,t, Start <= Ci,...,CgyCly e s Cp (5.6)

initial rules:

head « init, start So < init, start _ « init (5.8)

transition rules for (s, 0,s’,0’,+1) € &:

head « init, confle™, ¢, t7].s, conflc™,c™,t7 .o, confc™, ¢, t7|.head (5.9)
s’ « init, confle™,¢7,t7].s, conflc™,c™,t7].o,conflc™,c™,t7|.head  (5.10)
o « init, conf[c™, ¢, t7].s, conf[e™, ¢, t7].0, conf[c™, ¢, t " |.head  (5.11)
0’1 « init, conf[c™,c7,t7].s, conf[e™, ¢, t7].0, conf[c™,c™,t " |.head  (5.12)
o' « init, conf[ct,ct,t].o’ ! (5.13)
m*1 « init, conf[c™,c7,t7].s, confc, ¢, t7].0, conf[c™,c™,t " |.head  (5.14)

transition rules for (s,0,s’,0’,0) € &:

head « init, conf|c,c,t™].s, conf|c,c,t™].0, conf[c,c,t™|.head (5.15)
s’ « init, conf|c,c,t™].s, conf|c,c,t™ .o, conf[c,c,t™|.head (5.16)

o' « init, conf|c, c,t™].s, conf|c,c,t™].0, conf[c,c,t™|.head (5.17)
m® « init, conf|c,c,t™].s, conf|c,c,t™ .o, conf[c,c,t™|.head (5.18)
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head « init, conf[ct,c*,t™].s, conf[c*, ct,t™].0, conf[ct,ct,t™].head
s' « init, conf[cT, ct,t™].s, conf[ct,ct,t7].0, conf[ct, e, t™].head
o « init, conf[ct,ct,t7].s, conflct, et t7].0, conflct, c*, t7].head

o'+t « init, conf[c*, +, t~].s, conf[ct,ct,t7 .o, conflct,ct,t™].head
o’ « init, conf[c™,c”,t].o’t!

m~1 « init, conf[ct,ct,t™].s, conflct, et t7].0, conflcT, ¢ |.head

inertia rules for each o € Z (coveringc =0, ...,¢' —2,¢' +1,... ,N — 1):

o «init, confle,c’,t~ .0, conf|c’, ¢, t].head, conf[c’,c’,t].m™!
ord[ct,c'].<, ord[c, ¢’ ].#

o «init, conflc,c’,t” .o, conf[c’, ¢, t].head, conf[c’, ¢, t].m™L,
ord[c’,c].<, ord[e,c'].#

inertia rules for each o € X (coveringc =0, ...,¢' —1,¢’+1,... ,N — 1):

o «init, confle,c’,t™].0, conf[c’, ¢, t].head, conf|[c’, c’, t].m°

ord[c,c'].<, ord[c, ¢’ ].#

o «init, conflc, ¢, t].o, conf[c’, ¢, t].head, conf[c’,c’,t].m°,

ord[c’,c].<, ord[c, ¢'].#

inertia rules for each o € Z (covering ¢ =0, ...,¢' —1,¢' +2,... ,N — 1):

o «init, conflc,c’,t” .0, conf[c’, ¢, t].head, conf[c’, ¢’ , t].m*1,
ord[e,c'].<, ord[¢c, ¢'].#

o «init, conf|c,c’,t~].0, conf[c’, ¢, t].head, conf[c’,c’, t].m*1,
ord[c',¢7].<, ord[c, c'].#
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inertia rules for each o € X and state yes:

« The library module m3 = (op[by, ...
lowing groups of rules:

g <«

g «

yes «

yes «

[
[
yes « init, conf[c,c,t™].yes
[
[

by, by, ...

successor rulesfor1 <i<fand1<j<¢:

invy «

invj 1 < inv;, b;

invj 1 < inv;, b;

invi,, < inv;

predecessor rules for 1 <i < ¢:

by « by
o <b
E‘—Ih

Cl(_bl

« and the library module

my = (ord[x, ...

where R, consists of the following groups of rules:

inequality rules for 1 <i < ¢:

» Xo, x_l,

bz_+1 < bj;1,¢

Ciy1 < bit1,¢

i+1 < biti,¢
Ci+1 < bit1,¢

7é « xi’ﬁ

init, conf]c,c'*

init, conf|e,c¢'~

init, confc,c'*

init, conf[ec,c'~

3 X0y Y1y e

tl.o
tlo

,t].yes
t].yes

3 Vo V1o oo

e '
bj «— bj, inv;

bj+ «— bj, inv;

b;- «— bj, ian

b;f < b, inv;

it1 < biz1,6

Cit1 < bit1,¢

it1 < bivi,¢

Ci+1 < biy1,¢i

’y_€]’R4) )

# <« Z,Yi

(5.31)
(5.32)
(5.33)
(5.34)
(5.35)

,b_g],R3), where R; consists of the fol-

(5.36)

(5.37)

(5.38)
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dtm| ]

conf c,c,t]

[\

op|b] «—— ord[x,y]
Figure 5.6: Module dependencies of a deterministic Turing machine simulation

equality rules for1 <i < ¢:

-1

= < XN =" < X1,)1
_i _i-1 i, = = _i-1 (5.39)
- (_xi’yi’_ - ‘_xi,Yi,—
successor rules for1 <i < ¢:
2 < oplx].b} (540)
Z; < op[x].bf (5.41)
order rules:
<e=f (5.42)
< « ord|z,y].< (5.43)

shows the inter-module dependencies of the modules in D(T, N): the
modules represent nodes in the directed graph, and there exists an edge from a module
m; to a module m; whenever m; has a module call to m;. The graph shows the main
module m? in white, while the library modules m?, ms;, m, with input are shown in
gray. The structural dependencies make it clear that D(T, N) is cyclic: both m? and
my call themselves, while mj is a sink module that do not call any other module.

96



5.3.1. Proof of|Theorem 5.2|, |item 1|

We show now that we can simulate the computation of a deterministic Turing

machine T on input I with D(T, N) and prove that T accepts input I within N = omk
steps if and only if accept € 1fp(D(T, N)).

(=) Suppose T accepts input I within N steps. First, we get that Tpr N)T,(Mg) = M.
Let X C HBp|. oy, Y € HBplyy, and B C HBply. Then, Tp(r n)T;(Mg) contains at
dtm|@] all the facts 0;, at each conf[X] itis equal to X, at each op|B] the facts BU{inv,},
and at each ord[Y] the facts Y. Note that some instantiations may also contain invalid
bit representations S for time points and cell positions, thus also the sets M;/S of a
model M. This does not harm, in fact, we can partition the least fixpoint computation
into two parts: one part that contains only instantiations that represent valid cells and
time points, and one part that has arbitrary outcome. We defer the proof for that claim
until later and continue to look into instantiations with valid bit vectors only.

Let C; € HBp|. and C} C HBp| and T}, € HBp|; be valid bit representations for
cell positions ¢; and c}- and time points t;. Now, Tp(r n)T,(Mg) contains at conf[Co U
Co U Ty] the fact init, at conf[Cy U Cy U T;] for 0 < i < N the fact start, and at
conf[C; U C’}- UTy] for1 <i < j < k < N the fact init. Moreover, we have that
To(r,n)T,(Mgp) contains for a valid bit representations B at each op[B] the successor

and predecessor representation of B stored in the atoms bi+ , bi+ b ,E, and at each
ord[X U Y] for valid bit representation X and Y for integers x,y € {0,..., N — 1} the
fact # if x # y, or alternatively the facts = and < when x = y. Hence, we have
computed the binary relation # and = on the set {0, ..., N — 1}, and the subset of the
binary relation < on {0, ... , N —1}, viz. all the pairs along the diagonal of {0, ..., N — 1}2.
Thereafter, the initial rules will become applicable.

In the next step, Tp(r,n)13(Mg) contains at conf[Cy U Cy UT] then the facts head
and sy, and at conf[C; U C; U Tg] for 0 < i < j < N the fact _, thus the blank
input tape, whose content consists only of blank tape symbols ., is now stored in
our interpretation. Moreover, for valid bit representation X, Y, Z for integers x,y,z €
{0, ..., N—1}such thatz = x+1 and z = y, our interpretation contains at ord[XUY | the
facts from z that represent the successor of x, and the fact <. Now the interpretation
additionally stores x < x + 1 for the binary relation < on {0, ..., N — 1}. The following
steps Tp(r,N)154i(Mg) for 1 < i < N continue to add to the binary relation < further
line segments (x, x + i) located above and in parallel to the diagonal until we reach
Tpr,N)T3:n-1(Mg), where we have for integers x,y,z € {0,...,N — 1} such that
Z =X+ N —1and z = y the fact <, hence the interpretation contains now all pairs of
the binary relation < on {0, ... ,N — 1}.

Interlaced with the computation for <, the steps that follow Tpr nyT5(Mg) com-
pute the outcome of the Turing machine run according to the transition relation g, i.e.,
we have init true in all value calls corresponding to time point ; for i > 0, hence the
transition and some inertia rules become applicable. And since we can infer all < at
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ord[X UY] after we have reached step Tp(r N)T5, 5_1(Mg), we are then in the position
to apply all inertia rules.

In the first phase of the Turing machine run, the input I is prepared. The transition
rules only examine configurations in the diagonal of the grid for t — 1 of form (¢ —
l,c—1,t = 1), (c,c,t — 1), or (c + 1,¢ + 1,t — 1), i.e, they inspect the former time
point ¢ — 1 and thus infer the current state 5" and symbol o’ depending on the motion
direction. Hence, the actual tape for the computation can only be found in the diagonal
(0,0),(1,1),...,(N —1,N — 1) for each time point ¢.

The inertia rules (5.25)—(5.35) are more sophisticated. They scan for the head in the
diagonal (¢’, ¢') and copy o depending on the motion direction d € {—1,0, +1} from
the interpretation encoding the previous time point ¢ — 1 whenever ¢’ — min(d, 0) < c
(rules (5.25), (5.27), and (5.29)) or ¢ < ¢’ —max(d, 0) (rules (5.26), (5.28), and (5.30)). This
way we copy all o that have not been changed by the computation into time point ¢
at all (¢, c’) whenever the head is located at (¢’,c"). Hence unchanged tape content
has been copied into the interpretation horizontally connected through (¢, ¢”), which
stores head and depending on the motion direction contains o', o’ —1 g'*+1 derived from
the transition rules. In a next step, inertia rules (5.31)-(5.32) become applicable, whose
purpose is to copy at time point ¢ every symbol o that is located at (¢, ¢’ —1) or (c,c’+1)
into the interpretation for (c, ¢’, t), i.e., we distribute the same tape symbol o vertically
at ¢. This implies that we will also fill the diagonal (c, ¢, t) for every c and thus the tape
that is used for the transition rules is complete and can be used for the next transition.

After I has been prepared using &, the run of T on I is simulated and at conf[C; U
C} UTy] for 0 <i < j <k < N we get the respective configuration of T for cell posi-
tion ¢;, c} and time point f. Since T accepts I, there is an accepting configuration y =
(yes,w, o’ ---) for the run of T on I given by a transition (s, o, yes,c’,-) € d. This tran-
sition is encoded by a transition rule with rule head yes, hence lifp(D(T, N)), conf[C; U
C{UTy] F yesforaniand k suchthat0 <i < k < N and from inertia rules (5.33)-(5.35)
we eventually get lfp(D(T, N)), conf[Cn_1UCN_1UTn_1] F yes. This makes rule
applicable and we end up with lifp(D(T, N)), dtm|[@] F accept. showed that the
least fixpoint needs exponential time to compute, hence the claim follows.

(<) Suppose lfp(D(T, N)), dtm[@] E accept. For each conf[C; U C; U T] such that
0 <i <k < N, we can extract a configuration y; = (s,0°---o'~1, gt ... N~1) for the
machine T whenever Ifp(D(T, N)), conf[C; U C; UT] E s and lfp(D(T, N)), conf[C; U
C{UTy] F head and for all0 < j < N, Ifp(D(T, N)), conf[C;U C} UTy] E oJ. Since we
can infer accept, we must have lfp(D(T, N)), conf[Cn_; UCxn_; UTn_1] F yes, and as
the transition rules encode the relation 6 of T, there must be a transition (s, o, yes, o', -)
in § that fires the respective transition rule. Hence the computation yoy; -+ ¥n—1 is
accepting, as we can reach a configuration yj from y, such that 0 < k < N and
7k = (yes, w,u). Thus, T accepts I within N = 2¢ steps and halts in state yes.
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It remains to show that the least fixpoint computation can be partitioned into a

valid and an invalid part. If B is a valid representation of the bit vector by,... by, by... by,
then Tp(r Ny T,(Mg) contains at each op[B] the successor and predecessor representa-

tion of B by the atoms b;", E, b7, E If B is not a valid representation, i.e., b;, b_l €B

l

or bi,b_i & B for some i € {1,..., ¢}, then Tpr nyT,(Mgp) at op[ B] will either

+

1. contain at least a pair b}, b} or b;” ,E of complementary bits, or

2. both b, b or b7, b;” are not contained.

Since all transition and inertia rules contain module atoms of form conf[c*, c*,-].p,
conf|c’,¢',-].p, conf|[c*, ', -].p, ord[e, c'].p, or ord[c’, c].p such that % is either void
or from {+, —}, hence taking an ill-formed ¢, ¢’, and t or an ill-formed successor or
predecessor for ¢, ¢/, and t as input, each ill-valued instantiation will only take truth
values of ill-valued parts of an interpretation, and each valid instantiation will only
take truth values of valid parts of the interpretation. Since rules represent a valid
bit vector, the rule is applicable only in a valid instantiation, hence our result
follows.

The construction of D(T, N) is feasible in time polynomial in the size of I, thus
deciding whether a € 1fp(P) is EXP-complete. O

5.3.2 Proof of Theorem 5.2, item 2|

Showing membership in NEXP works as follows. We first guess an interpretation M
for a normal MLP P. Every interpretation M of P uses at most n - 2Bl value calls,
thus checking that all rules of I(P) are satisfied and whether M is a minimal model for
f PM takes exponentially many steps.

Hardness can be shown by adapting the Turing machine encoding offitem 1jin §5.3.1]
Given a nondeterministic TM T, we can make small modifications to the encoding
D(T,N) from above and use an MLP

N(T, N) = (mll\Ia mzNa m37 m49 m?)

with the additional library module mY that encodes branches in a nondeterministic
computation tree.

We use the following additional propositional atoms in our modules mY and mY
to encode branches in a computation of T

the atom by ; ; to encode that at time point ¢, the Turing machine chooses branch i for
transition (s, 0, s;, 07, d;) € §; and
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the atoms final and bad to encode that T is not at the final time point N — 1 and
whether t encodes an invalid binary representation for a time point ¢, respectively.

We use the following modules in our encoding:

the main module mY¥ = (ntm[], RY) such that RY is the set of rules RP and the addi-
tional rule

accept < not accept (5.44)

the library module
N _ — —_— r 2 - - N
my = (conf[cy, ...sCosClyuee s Coy Cly v s Cpy Clsvee s Cps b5 wee s Loy b5 e s Lo, RS

where RY consists of RY with the following modifications for the transition and inertia
rules: (5.9)-(5.35) get for a transition (s, 0, s, 0}, d;) € § the additional body atom

branch[t™].bg 5 ; (5.45)
Take, as an example, the rule (5.10) from m2. Then (5.10) in mY amounts to the rules
sy « init, conf[c™, ¢, t7].s, conf[c¢™, ¢, t7].0, conf[c™, ¢, t " |.head,

branch[t™ ].bs 5 ;

S} « init, confle™,¢™,t7].s, conf[c™,c™,t7].0, confc™, ¢, t7|.head,

branch[t™].bs 5

for all +1-transitions (s, o, 81,07, +1), ..., (s, a,s},a}-,+1) € dsuchthat1 < j <k,
where k is the number of all (s, 0)-transitions of form (s, o, s;, 0}, d;) € J.

the library module ms (op[by, ..., b, b_l, ,b_g]) from D(T,N);
the library module my (0rd[X1, ... s Xpy X1y eee s Xy Y1s oo » Vs V15 - 5 Ve ) from D(T, N);

and the library module mY = (branchl[ty, ..., t;, t1, ..., £;], RY), where RY is the follow-
ing groups of rules.

auxiliary rules for 1 <i < ¢:

final < t; bad < t;,t; bad < nott;,not ; (5.46)
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(S,, O,l) (S”, O.N) (SIN’ O.HI)

Figure 5.7: nondeterministic Turing machine run

branching rules for (s,0,s;,0;,d;) € d such that 1 <i < k:

bs s, < final,not bad,not by ; 1, ...,not b 5 ;_1,notbg 5 ;11,...,notbg 5 (5.47)

Note that k = 1 for deterministic transitions and thus rules (5.47) collapse to the single
rule bg ;1 < final,not bad, i.e., the transition is determined simply by s and o.

Since Turing machine computations start in state sy, connecting possible successor
states form a computation tree. Each level of the tree represents a time point in a
computation. In an actual run I" = y,, ..., yy_1 of an NTM we will have one transition
made for each successor configuration y; to ¥, thus a run is a path from root s
to a leaf state in the computation tree. Each successor configuration in a run is thus
determined by the chosen i* transition (s, o, 8,07, d;) € 6. The branching rules above
generate all possible branches in the computation tree for each time point ¢.

shows shapes along dotted lines, which stand for all possible choices of
transitions (s, 0, s;,0;,d;) €  that can be taken in a particular time point ¢, where
groups of equal shape share the same pair (s,0). At time point ¢, we must therefore
select for each group (s, o) exactly one transition (s, 0, §;, 0}, d;) € 6 when the machine
is in state s and the head is on . The set of all those transitions (s, o) are then the red-
colored shapes for each time point . When we connect the red shapes that have been
chosen to go from a configuration yj to y,;, we can see the path that has been chosen
by a run I in the computation tree of the NTM. The red shapes connected by lines
then record the actual transition that has been taken in a run T (in this figure, the
computation starts in (s”,c”) at time point 0 and then continues in (s”,c") at time
point 1, then continues at (s’,0’) at time point 2, and via a path to (s”, ") it ends up
in (s',0") at time point N — 1).

Our encoding satisfies the requirement that only one choice i for each pair (s, o)
can be made for a given time point ¢. Intuitively, at each time point f we guess a branch
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ntm|]
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Figure 5.8: Module dependencies of a nondeterministic Turing machine simulation

of the nondeterministic computation in mY and take then according to the transition
relation of the pair (s, o) all possible k branches of the computation into account, and
eventually kill all nonaccepting branches using the additional constraint in mY.

shows the inter-module dependencies of the modules in N(T, N). The
graph shows the main module m) in white, while the library modules m>, ms, my,
mY with input are shown in gray. Compared to the graph for D(T,N) in
the graph N(T, N) uses the adapted modules m}' and mY, and adds the module mY
with an additional edge from m} to mY. Hence, N(T, N) is also cyclic: both m} and
m, call themselves, while m; and mY are sink modules that does not call any other
module.

We show now that we can simulate the computation of a nondeterministic Turing
machine T on input I with N(T, N) and prove that T accepts input I and halts in state

yes in less than N = om” steps if and only if N(T', N) has an answer set.

(=) Suppose T accepts input I within N steps and halts in state yes. Then there is a
sequence of chosen configurations I' = ¥, ..., ¥y—1 such that the final configuration
¥n—1 has state yes. We show now that we can build an answer set for N(T, N) from .

Let MN denote the answer set for N(T, N) that will be obtained from I as follows:
set MY /@ = {01, ..., 0,4, accept} and M3 /B to the successor and predecessor of the set
B encoding a bit vector b. For sets X, Y, Z that encode bit vectors x,y, z representing
integers x,y,z € {0, ..., N — 1} in binary, we set M4N/(X UY)=XUYUZUOyxyz,
where Oy y 7 stores the bits of z, the atom < whenever x <y, the atom =! whenever
the i bits of x and y agree on their truth values, and the atom # whenever x = y.

Then, for a configuration y; = (s, W&, oit) in T, let $;,; be one of the successor
configurations (S;-, Wwé, 0'3- i), (S}, 171)6'0'3, it), or (S}-, w, (5’63 it) that can be obtained from a
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transition 7; = (s, 0, S}, 0'3, d;) € & at time point i. We can now set
« MY/T; = {final} U {bsc,jt Uiby o11 | 8 # s Ac' # o}, for T; representing time

pointsisuch that 0 <i <N —1,
e MY/Ty_1 = Ty_;, and

« MY/S = S uU{bad} U {final | E € Sfor j € {1,...,#¢}} for invalid bit representa-
tions S.

Given a configuration y; = (s, w, u) of the sequence I', i represents the time point ¢,
and |w| is the position ¢ of the tape head. We can form the input for module m1) as
follows. First encode i in binary as t using the atoms ¢; and E for1 < j < ¢. Then
encode |w| in binary as ¢ and for |[w| < ¢’, encode ¢’ as ¢’ using, for 1 < j < £, atoms
;> respectively. Let the resulting set of atoms be Cfll consisting of atoms
from ¢, ¢/, and t. Then, setup

-— ! !
Cj»Cj and cj,c

« MY /Ccil, forl1 <i<Nandc <, to C)f: and all atoms such that it satisfies

the offset and transition rules according to the transition 7; that can be obtained
from I, and

. M?/C;ﬁ(’) to Cf; U {head, sy, , init, start} U O, ./ ;, where O, ./ ; store the atoms
representing ¢'~, ¢’*, and t~ forc — 1, ¢+ 1 and t — 1, respectively.

Whenever we have an invalid bit representation S we set MY/S accordingly; here, the
transition rules are not applicable.

One can verify that the interpretation MY is a model of N(T, N). We show now
that it is also a minimal model of f N(T, N )MN. Towards a contradiction, assume that
there exists an interpretation M’ < MN such that M’ is a model of f N(T, N )MN. From
the construction of MN and the rules in N(T, N), we can only have that M:/T; does
not have an atom by ; j which is in MY/T;. But we must have a rule of form in

fN(T,N )MN, which contradicts the assumption that M’ is a model. Thus, MY is an
answer set of N(T, N).

(<) Suppose MY is an answer set of N(T, N). We can extract a configuration sequence
I = ¥9,71,-»Yn—1 for the machine T in a similar way as we have shown in
Set yo = (Sp,—, ), and let successor configurations y; for k > 0 be of the form
(s s W, u).

For each time point 0 < k < N and cell position 0 < i < N we inspect value
calls conf[C; U C; U T] and their predecessors conf[C;_; U C{_; U Ty_1], conf[C; U
C; UTk_1], and conf[Ci;, U C{ 4 U Tx_]. Whenever MN, conf[C; U C] U Ty ] F head
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and MY, conf[C; g U C{, 4 U Tx_1] F head for d € {—1,0,+1}, we can pinpoint the
transition from ¢ that brought us from . _; to yi as follows.

First we generate the words left and right from the tape head at time point k. As
the head is in position i, the word on the left is of the form w = o0 ... o'=1 and the
word at the head position is u = o’g'*!1...cN~1 For 0 < i’ <iandi < i’ < N, we
get o from MN, conf[C;r U C/iUTg] E O'i/, and at the head position i, we let ol = oj
for M, conf[C; UC] U Ty ] E 0.

The state is given by MY, conf[C; U C; U T] F s;, and we determine the motion
direction d; € {-1,0,+1} by reading MY, conf[C; U C} U Ty ] E m™1, MN, conf[C; U
CiUTy]E mO, or MY, conf[C; U CiUTy]E m*!, respectively.

Now given sj,0;,d;, there must exist a transition (8, 6,5;,0;,d;) € &, which we
can locate from the single atom by 5 ; such that MN, branch[Ty_,] E bss,j-

Since we can infer MN, ntm[@] F accept as required by rule (5.44), and as MN is a
minimal model, we also must have MN, conf[Cn_; U Cy_; U Tn—_1] E yes as required
by rule (5.2). Thus there must be an accepting configuration y in the computation T
generated by MN. Since we have inferred all configurations by transitions from &, this
means that I" must be accepting and that T halts in state yes on input I, thus T accepts
I within 2" steps.

The NTM encoding N(T, N) can be generated in time polynomial in the size of I,
hence deciding whether a normal P has an answer set is NEXP-complete. O

5.3.3 Proof of Theorem 5.2| [item 3]

An algorithm for checking whether there exists an answer set M for a disjunctive P is
as follows. First we guess an interpretation M for P. Since M uses at most n - 2/HPrl
value calls, we check that all rules from I(P) are satisfied and compute f PM in time
exponential in the size of P. The check whether whether M is a minimal model for
f PM by using an oracle for co-NP, thus we arrive at an NEXPN? upper bound.

The hardness part of this proof can be shown by an encoding of alternating Turing
machines. An exponential-time bounded ATM T that starts in an 3-state sy and have
exactly one alternation to a V-state solve the instances of problems in NEXPN?: let
%) and IIj denote k-alternation bounded ATMs as defined by Chandra et al. (1981),
and A} and AII} denote the class of sets accepted by %) and IT; machines which
accept in exponential time, respectively, then following Chandra et al. (1981) we obtain
Xp = AZ; and ITj, = AIIS.

For the purpose of showing NEXPNP-hardness, we will adapt the encoding N(T, N)
from [item 2|from and use the MLP

A(T,N) = (m{}, m§, ms, my, ms")
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where, compared to N(T, N), m?, mZA, and m? receive minor modifications to encode
universal configuration sequences for an ATM computation.

We use the following additional propositional atom in modules m$, m%, and m#
to capture the alternation to a universal configuration sequence in a computation of T

atom forall encodes that starting from a time point ¢ such that 0 < ¢ < N, Turing
machine configurations are universal.

The modules of A(T, N) have the following structure:

the main module m? = (atm[], R}), where R% is the set of rules RY, where rule
is replaced by rule

accept < conf|o,0,0].yes, conf|o, 0, 0].forall (5.438)
the library module

A _ —_— — r m - T A
M5 = (COnf[Cry e s Cps Clyuen s Coy Cly v s Cpy Cls wee s Cps b5 wen s Lo b5 e s Lo, RSY)

where R4 consists of RY and the following two groups of rules:

alternation rules for all states s € S such that g(s) = V:
forall < init,s (5.49)
forall < init, conf|c, c’,t™].forall (5.50)
[ct, ', t].forall (5.51)
forall < init, conf[c™, ¢, t].forall (5.52)
[ forall (5.53)
[

forall (5.54)

forall < init, conf|c

— ,
forall « init, conf|c,c't,

t]
t]

forall « init, conf][c,c'™,

saturation rules for all states s € S such that g(s) = Vand all o € Z:

head « init, atm.accept, forall (5.55)
S < init, atm.accept, forall (5.56)
o « init, atm.accept, forall (5.57)

Take note that once we arrive at a universal state s at time point ¢ we will derive forall
with rule (5.49). In following time points, the alternation rules keep deriving forall.
This is guaranteed by forcing forall to be true in every position of the grid (c,c’) at
time point ¢ with rules (5.51)—(5.54), and then continuing to derive forall once it is true
in a past time point t — 1 at any position (c, ¢") with rule (5.50).
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Figure 5.9: Alternating Turing machine computation tree

the library module m; (op[by, ..., by, b_l, ,b_g]) from D(T, N);
the library module my (0rd[Xq, ... s Xps X1, eee s Xgs Y1s oo Vs V15 - 5 Ve ) from D(T, N);

and the library module m2 = (branch|ty, ..., t,, t1, ..., t,], RY), where R is the set of
auxiliary rules (5.46) from RY and the following two groups of rules:

branching rules for (s, 0,s;,0;,d;) € d such that 1 <i < k:

bss1V ++V bg sk < final,not bad (5.58)

saturation rules for s € S such that g(s) = V and (s,0,s;,0;,d;) € 6 for 1 <i < k:
by 5 ; < final,not bad, atm.accept, conf|t, t, t].forall (5.59)

Note that the module atom conf|[t, t, t].forall in the saturation rules uses t as
input for ¢ and ¢’ for module m?%'. The alternation rules of m4 allow us to undifferen-
tiatedly access atom forall in any time point ¢t whose corresponding configuration is
universal.

In analogy to nondeterministic Turing machines, alternating Turing machine com-
putations form a computation tree as shown in|[Figure 5.9 Accepting runs start at time
point f, in an existential state s, until they reach a universal configuration with state s
from which only universal configurations can follow for ATMs that have only one al-
ternation. Here, the difference of the acceptance condition to classical Turing machines
come into play and we need to assure that all configurations of the subtree rooted at s
are accepting, i.e., all configurations of the subtree lead to a leaf with state yes.

The ATM encoding A(T, N) is essentially our NTM encoding N(T, N) from
irem 5.2| fitem 2| with the following modifications:
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atm| ]
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Figure 5.10: Module dependencies of an alternating Turing machine simulation

« the acceptance rule from m?* additionally checks whether conf|o, o, o].forall is
satisfied,

. m’z‘ superinduces alternation and saturation rules,
. m2 uses disjunctive branching rules and adds saturation rules.

In A(T, N) we introduce the atom forall that will be true in all value calls conf[C U
C'UTj] for mb for any cell positions ¢ and ¢’ represented by C and C’, respectively,
and all time points ¢; encoded by T’ such that for an i > 0, the machine T is in an
existential configuration at ¢;_; and in a universal configuration at ;, and t; > t;.

shows the inter-module dependencies of the modules in A(T, N). The
graph shows the main module m‘f in white, while the library modules mﬁ*, ms, My, m?
with input are shown in gray. The graph for N(T, N) in[Figure 5.8|is almost identical
to the graph for A(T, N): modules mY, mY, and mY have been replaced by modules
mp, m», and m2, respectively, with the additional dependencies from m% and m2 to
m{‘. Hence, A(T, N) contains four cycles: both m? and my call themselves, m? and
the main module m# are mutually recursive, and m# is in a cycle with m# and m%.
As before, module mj is a sink module.

We will show now that we can simulate the computation of an alternating Tur-
ing machine T with bounded alternation from existential to universal on input I with
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A(T,N) and prove that T accepts input I and halts in state yes in less than N = om"
steps if and only if A(T, N) has an answer set.

(=) Suppose ATM T accepts input I within N steps and halts in state yes. There is
a computation I' = g, ..., ¥y—1 such that fori > 0, I'y = y,,...,%_1 are existential
configurations, I'y = y;,...,¥v—1 are universal configurations such that all possible
successors ¥’ of y; are accepting, and the final configuration y_; has state yes. We
can build an interpretation M for A(T, N) based on I' = '3y similar to the proof of
Theorem 5.2 fitem 2| with MN for N(T, N) and show, mutatis mutandis, that MA is a
model for A(T, N) and minimal model of f A(T,N )MA.

We obtain M from I as follows: set M/, M4 /B, and M4 /(X UY) to the same
values as MY/@, M3 /B, and M} /(X U Y) from MN in the proof of[Theorem 5.2} |item 2|
Since N(T, N) is an encoding for ATMs that contain only existential configurations,
we can reuse the existential part T'5 of ' for A(T, N) and consider all y; from 'y =
Yo, - » Yi—1 and set

« M$/Cy. = M3/Cy, and
« M3/Tj =My /T;jU{bs, | (s,0,5i,0},d;) € & such that g(s) = V}.

To complete the interpretation M? we use the universal configurations I'y from T as
follows. We set for all y; from I'y = y;, ..., v —1

. M?/Cf} = {forall, head} U {s | s € S such that g(s) = V}UZ,

« M&/T; = T; U{final} U{bss1,....,bs5x | S € Sand o € X such that g(s) =
ViU{bso 1 | (s,0,5;,0{,d;) € & such that g(s) = 3}, for all T; representing time
point jsuch thati < j <N —1,

e M&/Ty_1 = Ty_1, and

« M2/S = SU{bad}U{final | t; € Sfor j € {1,...,¢}} for invalid bit representa-
tions S.

Now MA is an interpretation for A(T,N). One can verify that the interpretation M

A
is a model of A(T, N). We show now that it is also a minimal model of f A(T, N)™ .
Towards a contradiction, assume that there exists an interpretation M’ < MA such

that M’ is a model of f A(T,N )MA. From the construction of MA and the rules in
A(T,N), we can only have that M3/T; does not have an atom by ; ; which is in M&"/T;.

A
But we must have a rule of form (5.58) in f A(T, N)™", which contradicts the assump-
tion that M’ is a model. Thus, M? is an answer set of A(T, N).
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(<) Suppose M# is an answer set of MLP A(T, N). We can extract an accepting compu-
tation T' = y, ..., w1 for the machine T from M? such that fori > 0,T3 = ¥, ..., ¥i—1
are existential configurations, I'y = ¥, ..., ¥w—1 are universal configurations such that
all possible successors y’ of y; are accepting, and the final configuration y5_; has state
yes. By rules and (5.48), we must have that accept € M$*/@, hence there exists
a maximal i such that 0 < i < N — 1 and y,, ..., %_ are all existential configurations.
Set yo = (S, —, ), and let successor configurations yj for k > 0 be of the form
(sj,w,u). We can now extract existential successor configurations starting from y,
similar to of the proof for NTMs, with the distinction that we have disjunc-
tive branching rules (5.58). Since we start in an existential phase the bodies of the
saturation rules are not satisfied as forall cannot be inferred from time point
to up to and including a time point ¢;_;, where 0 < i < N — 1. Once we can infer
forall at time point ¢;, the machine had performed an alternation, and we have arrived
at the universal computation I'y. Thus, the answer set M gives us first the desired
existential configuration sequence I'y = g, ...,%_1. Then, starting from i, we can
build I'y = ¥;, ..., ¥w_1 by following those universal transitions from § that follow y;
This works from the observation that our answer set M is a minimal model and any
nonaccepting universal configuration that follow our fixed I'; would have killed M#
by rule (5.44). This is not the case, and so all universal configurations are accepting
in the computation I'y generated by MA. Since we have inferred all configurations by
transitions from &, this means that I must be accepting and that all configurations of

T halt in state yes on input I, thus T accepts I within omk steps.

We can build the ATM encoding A(T, N) in polynomial time in the size of I, thus
we have shown that deciding whether a given disjunctive propositional MLP P has an
answer set is NEXPN'-complete. O

5.4 Acyclic MLPs

In this section, we turn our attention to a restricted class of normal propositional MLPs
with input and define acyclic MLPs. As the name suggests, this class of MLPs do not
allow recursive module calls. Interestingly, acyclic MLPs are NEXP-complete, just like
unrestricted normal propositional MLPs. As an example of modular logic program-
ming, we show now how a domino problem can be encoded using a propositional MLP
with negation, using several modules. First, we define acyclic propositional MLPs.

Definition 5.1 (Acyclic MLP).
We say that a propositional normal MLP P is acyclic, if the call graph CGp is acyclic.

Next, we define domino systems, tilings, and the exponential square tiling problem,
which will be used in showing the hardness part for our complexity result. We follow
the definitions from Grédel (1989) and Savelsbergh and van Emde Boas (1984).
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Definition 5.2 (Domino systems).

A domino system is a triple D = (D,H,V) such that D = {d;, ..., dy} is a finite set
whose elements are called dominoes, and H,V C D X D are binary relations. Let
R =1{0,...,2" — 1} be a set of integers given in binary digits of length n, we say that D
tiles R X R, if there is a tiling T: R X R — D such that, for each i, j € R,

(T1) ifr(i,j) =dand (i + 1, j) = d’, then (d,d") € H; and
(T2) ift(i,j)=dand t(i,j+ 1) = d’, then (d,d") € V.
The exponential square tiling problem consists of all pairs (D, R) such that D tiles RXR.
Lewis (1978) has shown the following result.

Exponential Square Tiling (Lewis, 1978)The exponential square tiling problem is
NEXP-complete.

Example 5.1 (Domino system with square tiling) Let D = (D, H, V) be a domino
system with dominoes D = {®, ©, ®, @}, let

H={®,0),(0,Q),(®,9),(S,d®)}
and
V={(®,8),(®,0),(@,0),(©.,R) ,

be binary relations, and let R = {0, ..., 15}, i.e., R ranges from 0 to 2" — 1 for n = 4.
The domino system D tiles R X R with the following tiling T as a witness:

iis even: iis odd:
® j=0 mod4 @ j=0 mod4
o ® j=1 mod4 o (=) = mod 4
(i, j) = (i, j) =
@) (%) = mod 4 @) ® = mod 4
© j=3 mod4 ® j=3 mod4

The placement of the dominoes on R X R is shown in [Figure 5.11

We can now show the following.

Theorem 5.3 (Computational complexity of acyclic MLPs)
Given an acyclic MLP P = (P;[q, ], ... , P»[qx]), to decide whether P has an answer set
is NEXP-complete.
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Figure 5.11: A domino system tiles R X R

Proor Membership in NEXP follows from the results in[Theorem 5.2] as propositional
normal MLPs are NEXP-complete.

To show NEXP-hardness, we encode the tiling problem as acyclic MLP. Given a
domino system D = (D,H,V) and R = {0,...,2" — 1} as above, we can reduce the
problem whether D tiles R X R to an acyclic MLP

T(D, R) = (mo, my,...,Myy41,N1, Ny, N3, n4)
as follows:
The main module my = (main[], Ry) has one rule

Ry = {kill < not gen,.ok,not kill} . (5.60)

To encode integers in the range R, we use lists b = by, ..., b,, of propositional atoms b;.
The positions on the grid R? are then encoded by pairs (x, y) of such lists.

The library modules my, ..., m,, 1 issue the checks for each position on the grid.

For the range i = 1, ..., 2n, this is done by cascading calls of modules
m; = (geni[bl’ e bi—l]’ Ri),

111



Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

main[] — gen,[] — gen,[by] — --- — gen, [by,...,b3,_4]

e

gen,, . [b1, ... byp]

l

check[x,y]

R TN

tile[x,y] inc[b] order[b]

Figure 5.12: Module dependencies of a domino system encoding

where both values for the it bit are considered in the rules R;:

b; « (5.61)
b; < b; (5.62)
ok < gen, .[by,...,b;_1,b;].ok, gen, [by, ..., b;_1, b;].ok (5.63)

Note that the dummy rule b_l - b_l lets b_l to be false in all minimal models. For i =
2n + 1, we then call check[x, y] in module

Man+1 = (ge”2n+1[b1, v banl, Rong1),
where R, 1 consists of the rule
ok < check[by, ..., by, ].0k (5.64)
such that x = by,...,b, andy = by, 1, ..., bap.

The library module n; = (tile[x,y],Q,) assigns a position (x,y) on the grid R X R
arbitrarily a tile from D such that k = |D|:

Q, = U {d; < notd,, ...,notd;_;,notd;q,...,notd;} . (5.65)

On top of this, we have to check where the arbitrarily chosen tiling 7 is legal, i.e., obeys
the relations H and V. We do this using the library module

n, = (ChECk[X’ Y]’ QZ)
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that receives as input a position (x,y) and has the rules Q,:

ok < not violated (5.66)

yup, < not order[y].last, inc[y].b;" fori=1,..,n (5.67)

violated < not order|y]|.last, for (d;,d;) & V such that (5.68)
tile[x, y|.d;, tile[x, yup].dj i,jef{l,..,|D|}

xright, < not order[x].last, inc[x].b;" fori=1,..,n (5.69)

violated < not order[x].last, for (d;,d;) & H such that (5.70)
tile[x,y].d;, tile[xright, y].d i,je{l,..,|D|}

« the module n; = (inc[b], Q3) calculates the increment of an input number b by one
inb* = b, ..., b} analog to the successor rules from module m; = (op[b], R;) in the
proof of [Theorem 5.2| item 1} and

« module n, = (order[b], Q,) tells in last whether the input number b is the maximum
in R: . L
last < by,...,b,,notby,...,notb, (5.71)

shows the inter-module dependencies of the modules in the domino
encoding T(D,R) = (mgy, My, ..., My 41, N1, Ny, N3, Ny). The main module my and li-
brary module without input m; is shown in white, and the library modules with input
My, ..., My, 1 and Ny, ..., Ny are gray. The structural dependencies show that T(D, R)
is acyclic: there is a chain of calls from m to n;, and starting from there n; calls three
sink modules n,, ns, n, that do not call further modules.

The MLP T(D, R) can be constructed in polynomial time from D and R, and the call
graph CGrp gy is acyclic: rooted at m;, the call graph is spanning a binary tree of value
calls gen,[S] — gen, S u {b }] and gen,[S] — gen, L[S], whose leaves genZnH[S’]
have an edge for X = S L by..b, and Y =5’ |y LY "b,, to the value call check[X U Y].
From check[X U Y] only three value calls follow: tile[ X UY], inc[X U Y], order[X],
and order[Y], all of which do not possess any outgoing edges in CGy(p ). There-
fore, T(D, R) is an acyclic MLP. We show now that T(2D, R) has an answer set iff D
tiles R X R.

(=) Suppose T(D, R) has an answer set M. We show now that M can be transformed
into a tiling 7: R X R — D such that and hold. Let M, /(X UY) be the
part of M for module n; = (tile[x,y],Q;) such that X and Y contains only atoms
from x and y being true in M, /(X UY), respectively. Let i, j € R be integers that
correspond to x and y, then we set the tiling 7(i, j) = d, wheneverd, € M,, /(X UY).
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Since module n; can only infer a single d, € D for a particular pair (x,y), we get
that 7 is a function. From module m, we force the cascade of modules my, ..., my, 1
to have ok € Mmi/S for1 <i <2n+1, hence violated & Mmi/S for i < 2n. Moreover,
we get that ok € M,,,/(X UY) from ok € My, /S such that S = X UY. The lists
of atoms xright and yup give us the successors for x and y in n,, hence there is no
pair (d,d") € H that violates and there is no pair (d,d") € V that violates |(T2)|
which is enforced by the rules and (5.68), respectively. Therefore, 7 is indeed a

tiling satisfying and[(T2)| and thus D tiles R X R.

(«) Let D tile R X R, i.e., there exists a tiling 7: R X R — D such that and
hold. We show now that 7 can be transformed into an answer set M of T(D,R). We
set M as follows:

° Mo/@ = ;
» for 1 <i < 2n and gen[S] € VC(T(D, R)), M;/S = {ok,b;} U S;
. M2n+1/S = {Ok} U S;

« for i, j € R such that (i, j) = d,, let x and y correspond to i and j, and let X
and Y contain only those atoms from x and y that are true, we set M,,, /(X UY)
to{d,}UX UY;

« fori,j € R, let x and y correspond to i and j, let X and Y contain only those
atoms from x and y that are true, let xright and yup correspond to i + 1 and
J +1, and let X, and Y, contain only those atoms from xright and yup that

are true, respectively, we set M, /(X UY) = {ok}UX UY U X, g1, U Y,,,; and

- we set M,,./B to the successor of the bits in B and M,,, /B stores last whenever B
is the maximum in R.

It is easy to see that M is a model for T(D, R). As 7 is a tiling, we have at exactly one
d € Dfor all i, j € R such that 7(i, j) = d, hence module instances of n, are satisfied.

Next, we show that M is a minimal model for f T(D, R)M. Towards a contradiction,
assume to the contrary that there exists an interpretation N < M of T(D, R) such that
N E fT(D,R)M. Since M,/@ = @&, we must have ok and b; in M;/S for 1 <i < 2n, and
ok in M5, ,1/S. Therefore, M,,/S must contain ok. The successor rules for xright and
yup in n, force that the atoms for the given S = XUY are present, and since 7 is a tiling,
n; requires that appropriate d;, d; € D are true in M, /(X UY), M, /(X,;, UY), and
M, /(X UY,,), respectively. Since violated & My, /S, removing ok from any value call
in N violates that N F f T(D, R)™. Hence, N is not a model of fT(D, RMasN <M,
which contradicts our assumption. Therefore, M is a minimal model for f T(D, RM
and so we proved that M is an answer set for T(D, R).
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We proved that deciding whether an acyclic MLP has an answer set is a NEXP-
hard problem, using a polynomial reduction from the tiling problem, which is NEXP-
complete by [Exponential Square Tilingl Together with the NEXP upper bound we
obtain that deciding acyclic MLP consistency is NEXP-complete. O

5.5 General MLPs

In this section, we first remove all syntactic restrictions and examine the computational
complexity of MLPs in general case, i.e., we admit nonground Datalog rules, allow n-
ary predicates as input, and cyclic module calls. Then, we restrict MLPs with bounded
input predicate arities in

In the Datalog setting, we get for MLPs a similar picture as for ordinary logic pro-
grams, where the complexity of Datalog programs is exponentially higher than the
one of propositional programs. Intuitively, the process of grounding may introduce
exponentially many ground instances of an atom, which in turn may result in double
exponentially many module instances; thus, I(P) and interpretations M have double
exponential size in general. Computing 1fp(P) for Horn MLPs P may thus take double
exponential time, and a guess for an answer set has double exponential size. For MLPs
with bounded input predicate arities we get that the complexity stays on the same level
as the one of ordinary logic programs.

The hardness parts can be shown by lifting the Turing machine constructions for
the propositional case from Here, ¢-ary predicates q(X1, ..., X)) are used to store
2¢ bits of a number, such that a range of 2% tape cells and time stamps can be spanned
via module inputs q = g, q.

We get the following results.

Theorem 5.4 (Computational complexity of general MLPs)
Given a nonground MLP P = (P;[q, ], ..., Pn[qn]),

1. if P is Horn, the unique answer set M = Ifp(P) of P is computable in double
exponential time and to decide whether « € M for a ground atom « is 2EXP-
complete;

2. if P is normal, to decide whether P has an answer set is 2NEXP-complete; and

3. to decide whether P has an answer set is 2NEXPN-complete.

The next sections will show this result.
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5.5.1 Proof of Theorem 5.4] |item 1]

We first show membership in 2EXP. Since |HBp| is exponential in the length of P, we
have that every interpretation M of P consists of at most n - 2/"®¢l components, we
have that the least fixpoint of the Tp operator can be computed in double exponential
time: if we exhaustively apply Tp(M;/S), 1 < i < nand S C HBply,, we reach the
fixpoint after at most (m + 1) - n - 2IHBel application steps, where m is the number of
ground rules in gr(P) (which is exponential in the size of P). Each application of Tp
can thus done in exponential time. This shows that the unique answer set M = 1fp(P)

can be computed in time double exponential in the size of P.

We show now 2EXP-hardness. Given a deterministic Turing machine T which
halts within N = 2% steps for an input I such that m = |I| and ¢ = m for some
constant k, we can simulate T by an MLP D(T, N) = (nP, n?, ns, ns, n,) consisting of
four modules. Similar to D(T, N) from the main module nP computes in accept
the acceptance of I, while library module n> encodes transition rules for & and thus
input I. The library module ns defines a linear order <! for {0, 1}i, which will be used by
library module n,4 to define successor and predecessor rules for cell-time movements.

To address N = 2% steps, we make use of £-ary predicates in the input of modules
and encode the bits of a nonnegative number n € {0, ..., 220 _ 1} as a sequence of
predicates b, b. In D(T, N) we use the atoms b; and b_l to encode whether the i** bit is
true or false for a nonnegative integer n € {0,...,2¢ — 1}. In D(T,N) we lift index i
from atoms b; and b_l and encode i € {0,...,2¢° — 1} in binary in the arguments of
b(Xy,...,X,) and b(X1, ..., X,): if the j™ bit of i is 1, we set Xj = 1in b(Xy, ..., X)),
otherwise if the j bit of i is 0, we set X; = 0 in b(X), .., X,). Now, for a fixed bit

sequence t of length ¢, b(¢y,...,t,) and B(tl, ..., tp) must have complementary truth
values in a model. This way we can represent 2% cell positions and time points.
We set up the modules of D(T, N) = (n?, n?, ns, Ny, Ns) up as follows. We have

a main module nP = (dtm[], QP), where QP is the set of rules

o(X) « succ.ﬁrste(X) (5.72)
0(Y) < o(X), succ.succ?(X,Y) (5.73)
accept < conflo,0,0,0,0,0].yes (5.74)

Note that QP is essentially RP with ¢-ary predicates: the rules are replaced by
rules (5.72)—(5.73) and rule (5.2) replaced by (5.74). For a number N = 2% and a bit

sequence t of length € such that t encodes a nonnegative integer i in binary, o(t) stands
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for the i'" bit being 1 in nonnegative integer n € {0, ..., N — 1} encoded in binary, thus
input (o0, 0,0,0,0,0) represents integers (N —1,N —1,N — 1).

a library module n? = (conflc,c,c’, c,t,t], Q?), where QIZ) consists of the rules from
the propositional encoding in RY with minor modifications: we drop the auxiliary rules
from RY and keep

the offset rules (5.3)—(5.5)
the initial rules (5.8)),

the transition rules (5.9)—(5.24), and
the inertia rules (5.25)—(5.35),

and apply the following customization to all rules: we drop all indices i from the

atoms b;", by, bf, by, t7, ¢, c;t
b=, b+, b-,t7,c7,ct, ¢'7, 't with the variables X = X3, ..., X, as parameters. Fur-

thermore, instead of the auxiliary rules of R?, the set le) contains the

,¢;~,c;" and then use them as ¢-place predicates b,

auxiliary rules:

init(X) « t(X), succ. ﬁrsté(X) (5.75)
init(Y) < init(X), t(Y), succ.succ?(X,Y) (5.76)
start(X) « ¢(X), succ. ﬁrstg(X) (5.77)
start(Y) < start(X), c(Y), succ.succ?(X,Y) (5.78)
init < t(X) (5.79)

init « init(X), succ.last’ (X) (5.80)
start « start(X), succ.last’ (X) (5.81)

Intuitively, init and start compute all successor bits of the least significant bit for the
initial time point and cell position 0, respectively. Thus, init and start is true whenever
we have all possible £(t) and c(t) true, respectively.

To show the modifications for the offset rules in an exemplary way, the rules for ¢;~
and ¢;* in (5.5) from m2 is in n? replaced by the rules

'~ (X) « op[c'].b*(X) ¢'t*(X) < op[c'].b~(X)

=(X) < op[c'].b*(X) ¢+ (X) < op[e'].b=(X)
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« alibrary module ny = (succ[], Qz), where Q3 consists of the following groups of rules.

initial index successor rules:

index successor rules for 1 <i < ¢ (X; = Xy,...,X;and Y; =Yy, ..., Y)):

succ'(0,1) « ﬁrstl(O) « last'(1) <
val(0) « val(1) «

succ*N(Z,X;, Z,Y;) < succt(X;,Y;), val(Z)

succ*W(Z,X;,Z',Y;) < succ'(Z,2'), lasti(Xi),ﬁrsti(Yi)
ﬁrsti“(Z,Xi) « ﬁrstl(Z),ﬁrsti(Xi)
lastiH(Z,Xl-) « last'(2), lasti(Xi)

(5.82)
(5.83)

(5.84)
(5.85)
(5.86)

(5.87)

« a library module n, = (op[b, b],QY), where QY consists of the following groups of

rules.

successor rules (X = X7,...,X,and Y =Y, ..., Y,):
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inv(X) « succ.ﬁrsté)(X)

inv(Y) « inv(X), succ.succ? (X, Y)
nv(Y) < inv(X), b(X), succ.succ?(X,Y)
inv(Y) < inv(X), b(X), succ.succ’(X,Y)

b+(X) « b(X), inv(X)
b*(X) < b(X), inv(X)
b+(X) < b(X), inv(X)

b+(X) < b(X), inv(X)

(5.88)
(5.89)

(5.90)
(5.91)

(5.92)
(5.93)
(5.94)

(5.95)
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predecessor rules (X = X;,...,X,and Y =Yy, ..., Y)):
b~(X) « b(X), succ. ﬁrst€(X)
b= (X) < b(X), succ. ﬁrsté)(X)

¢(X) <« b(X), succ.ﬁrstg(X)

¢(X) < b(X), succ. ﬁrstg(X)

b=(Y) « b(Y),e(X), succ.succ’(X,Y)
c(Y) « b(Y),¢e(X), succ.succ?(X,Y)
b=(Y) « b(Y), c(X), succ.succ?(X, Y)
c(Y) < b(Y), c(X), succ.succ?(X,Y)
b= (Y) < b(Y),e(X), succ.succ?(X,Y)
¢(Y) < b(Y),(X), succ.succ?(X,Y)
b=(Y) « b(Y), c(X), succ.succ? (X, Y)
c(Y) < b(Y), c¢(X), succ.succ?(X,Y)

(5.96)
(5.97)
(5.98)

(5.99)

(5.100)
(5.101)
(5.102)
(5.103)

(5.104)
(5.105)
(5.106)

(5.107)

Note that ny lifts ms from D(T', N) by moving indexes i into predicate arguments, thus

we can compute successors and predecessors of integers encoded by b, b in the range

{0,..,N -1}

« and a library module ns = (ord[x,X,Y,y], Qs), where Qs consists of the following

groups of rules.

inequality rules (Z = Z;, ..., Z,):
# < x(2),y(Z) # < X(2),¥(Z)

equality rules (Z=Z,,...,Z,and Z' = Z1, ..., Z,):
2(2) < x(Z), y(Z), succ.first’(Z)
=(Z) < =(Z)), succ.succ?(Z, Z), x(Z), y(Z)
2(2) < X(Z),¥(Z), succ.first’(Z)
2(Z) <« &(Z)), succ.succ®(Z',Z),x(Z), y(Z)
= « &(2), succ.last’(Z)

(5.108)

(5.109)
(5.110)

(5.111)
(5.112)

(5.113)
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successor rules (X = X1, ..., X,):

z2(X) < op[x,x].bT(X) (5.114)
Z(X) < op[x,X].b*+(X) (5.115)
order rules:
<= (5.116)
<« ordlz,Z,y,y].< (5.117)

Note that n; lifts m, from D(T, N) by moving index i into predicate arguments. Thus,
we can order pairs of integers in the range {0, ..., N —1} encoded by inputs x, X and y, .

shows the inter-module dependencies of the modules in D(T,N) =
(n?,nY, ny, ny, ns). Compared to the dependencies for D(T, N) in D(T,N)
has an additional sink library module n; for computing the successor relation and
which is used by all library modules ng, N4, Ns. Just like D(T, N), ﬁ(T, N) has cyclic
dependencies: n? and ns call themselves.

We show now that we can simulate the computation of a deterministic Turing
machine T on input I with D(T, N) and prove that T accepts input I within N = ZZMk
steps if and only if accept € lfp(ﬁ(T, N)). The argument that D(T,N) gives us the
desired outcome is the essentially the same as the argument in §5.3.1 (Theorem 5.2|
with D(T, N)). We have changed the time step and cell position addressing in our
encoding D(T, N) by introducing predicate arguments that play the role of the indexes
in D(T, N). To this end we have introduced module n;, which takes care of computing
a successor relation for all pairs of integers (n,n’) such that n,n’ € {0,...,2¢}. The
transition rules are essentially identical, with the difference that module input take
£-place predicates for storing cell positions and time points.

From a given DTM T and bound N we can build D(T, N) in polynomial time in
the size of I, therefore deciding whether a € lfp(P) for a nonground Horn MLP P is
2EXP-complete. O

5.5.2 Proof of Theorem 5.4} item 2|

Showing membership in 2NEXP is similar to the proof of [Theorem 5.2| [item 2| from
§5.3.2l An algorithm that checks whether a nonground normal P has an answer set
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dtm| ]

Cconf[c,?,c’,?, t,t]
/O

succ[] <~ ord[x,%,y,y]

N

op[b, b]

Figure 5.13: Module dependencies of a deterministic Turing machine simulation

starts by guessing an interpretation M for P. Every interpretation M of P uses at most
n - 22" value calls, thus checking that all rules of I(P) are satisfied and whether M
is a minimal model for f PM takes double-exponentially many steps.

Hardness can be shown by adapting the Turing machine encoding of from
We setup the modules of N(T,N) = (nlf, n?, ns, N4, Ns, ng) as follows. We have

+ a main module nY = (ntm[], QY), where QY is the set of rules QP with the additional
rule from the propositional module mY;

- alibrary module n} = (conflc,c,c’,c't,t],QY), where QY consists of the initial rules,
transition rules, inertia rules from QY with the following modifications for the transi-
tion and inertia rules: (5.9)—(5.35) get for a transition (s, 0, 5, 0}, d;) € & the additional
body atom

branch[t™,t=].bs o ; (5.118)

As an example, the rule (5.10) from n? is in n) replaced by the rules

sy « init, conf[c™,c=,c™,¢c=,t~,t~|.s, conf[c,c—, ¢, ¢, t 7,1 |.0,

conflc=,c=,c~,c=,t=,t~.head, branch[t_,t_—].bs,g’l
s§ < init, conf[c~,c=,c™,¢c=,t=,t~].s, conf[c™,c=,c”,c—,t7,t~ .0,
conf[c=,c=,c~,c=,t,t~).head, branch[t_,t_—].bs’a’j

for all +1-transitions (s, o, 81,07, +1), ..., (s, o,s},a},+1) € dsuchthat1 < j <k,
where k is the number of all (s, 0)-transitions of form (s, o, s;, 07, d;) € J.
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ntm||

C“’”f (0,2, E]— pranch, 7)

succ| ]

ord[x,X,y,¥] 3

—_— /
op[b, b]

Figure 5.14: Module dependencies of a nondeterministic Turing machine simulation

the library module n3 (succ[]) from D(T, N);
the library module ny (op[b, b)) from D(T, N);
the library module ns (ord[x, X, y, y]) from D(T, N);

and the library module n§ = (branch[t,t],QY), where QY are the branching rules
from Rf such that all module input lists replace t = 1, ..., tp, 1, ..., [, With £-ary input
predicates ¢, . Furthermore, Q5N has

auxiliary rules (X = X, ..., X):

final < t(X) bad « t(X),1(X) bad < not t(X), not £(X) (5.119)

The inter-module dependencies for I/\\I(T,N ) = (nll\l, nIZ\I, N3, Na, Ns, nlgl) are shown
in Compared to the dependencies for N(T', N) in [Figure 5.8 N(T, N) has
an additional sink library module ns, and since N(T,N) adapts D(T, N) for NTMs, it
contains the branching module n? just like N(T, N) contains mIS‘I ; the two self-cycles
related with n) and ns remain intact.

We show now that we can simulate the computation of a nondeterministic Turing
machine T on input I with N(T, N) and claim that T accepts input I and halts in state

mk 2
yes within N = 22" steps if and only if N(T,N) has an answer set. The argument
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follows the one for N(T, N) in §5.3.2|(Theorem 5.2} [item 2}, as only minor modifications

to the input predicates have to be taken into account for addressing at most 22mk time
points and cell positions.

The algorithm outlined above for generating N(T', N) is a polynomial reduction
from Turing machine T on input I, thus we have shown that deciding whether a normal
nonground MLP P has an answer set is 2NEXP-complete. O

5.5.3 Proof of Theorem 5.4, item 3|

We show membership in 2NEXPN' akin to the proof of [Theorem 5.2} [item 3| from
§5.3.3] An algorithm for answer set checking given a nonground disjunctive P works

2|HBp|

as follows. First we guess an interpretation M for P. Since M uses at most n - 2
value calls, we verify that all rules from I(P) are satisfied and compute f PM in time
double-exponential in the size of P. The check whether whether M is a minimal model
for f PM uses an oracle for co-NP, thus we reach a 2NEXP™ upper bound.

Hardness can be shown by adapting the Turing machine encoding of from
\ We setup the modules of A(T, N) = (n, n?, Ns, N4, Ns, ng\) as follows. We have

a main module n{ = (atm[], Q¢), where Q% is the set of rules R? with the rules

replaced by (5.72)-(5.73).

a library module ny = (conf [c,E,t,f],QzA), where Q? consists of the initial rules,
transition rules, inertia rules, saturation rules from R%, and the offset and auxiliary
rules from Q. For the rules from R%, we apply the usual index modification to all rules:

we drop all indices i from the atoms b;", b;", bi", b el

F,b;, b byt ¢, ¢, ¢, ¢t and then use ¢-
place predicates b, b=, bt,b—,t~,c7, ct, ¢'7, ¢'T with the variables X = X1, ..., X,
as parameters.
the library module n3 (succ[]) from D(T, N);
the library module ny (op[b,g]) from D(T, N);
the library module ns (ord[x, X, y,y]) from D(T, N);

and the library module ng = (branch[t, t], Q?), where Qg\ are the branching rules and
saturation rules from R and the auxiliary rules from QY. In all module atoms, we
replace input t = £, ..., tp, t1, ..., £, With €-ary input predicates ¢, f.

The MLP K(T,N) = (nf, nﬁ*, ns, Ny, Ns, ng\) is the most complex one in this chap-
ter. Its dependencies are shown in which shows the close relationship to
A(T,N) in A(T, N) has an additional sink library module nj like all non-
ground MLP encodings before, and since A(T, N) adapts N (T, N) for ATMs, it contains
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atm| |
branch(t, t]

Cconf[c, c,c',c,t,t]

succl ]

ord[x,X,y,y]

Figure 5.15: Module dependencies of an alternating Turing machine simulation

the branching module n2 which calls n{', thereby creating an additional cycle in the
dependencies. The module n adds another cycle through nf*. The self-loops n4 and
ns are present, too.

We will show now that we can simulate the computation of an alternating Tur-
ing machine T with bounded alternation from existential to universal on input I with

N k

A(T, N) and prove that T accepts input I and halts in state yes in less than N = 22"

steps if and only if A(T,N) has an answer set. The argument follows the one for

A(T,N) in §5.3.3 (Theorem 5.2| [item 3), with the minor modifications to the ¢-place
k

input predicates for addressing at most 22” time points and cell positions.

The ATM encoding A(T, N) can be built from T and N in polynomial time in the
size of I, which shows that deciding whether a disjunctive nonground MLP P has an
answer set is 2NEXPN-complete. O

5.5.4 Complexity of MLPs with bounded predicate arities

Finally, we note that the complexity drops by an exponential to the one of ordinary
logic programs if the arities of input predicates are bounded by a constant, as then
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I(P) and M have single exponential size. Using the results in this chapter, the next
statement then follows immediately.

Corollary 5.5 (Complexity of general MLPs with bounded predicate arities)
Given a nonground MLP P = (P;[q,], ..., P,[q,]) whose predicate arities of q; for
i =1,...,n are bounded by a constant,

1. if P is Horn, the unique answer set M = Ifp(P) of P is computable in exponential
time and to decide whether &« € M for a ground atom « is EXP-complete;

2. if P is normal, to decide whether P has an answer set is NEXP-complete; and

3. to decide whether P has an answer set is NEXPN-complete.

Compared to answer set programs with bounded predicate arities (Eiter et al.,
2007a), which shows a similar drop in complexity, we are an exponential higher in
complexity. This is of no surprise, as modules with input have to be taken into ac-
count. Techniques based on (Eiter et al.,2010) may prove to be useful for implementing
a reasoner for MLPs with bounded-predicate arities.
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Translation of Modular
Nonmonotonic Logic Programs to
Datalog

N this chapter, we investigate rewriting techniques for translating Modular
Nonmonotonic Logic Programs with module input into programs of simpler
structure. We are mainly concerned here with logic programs in the Datalog
setting (Gottlob et al., [1989), i.e., we try to shift a modular logic program by

rewriting the modules or a subset thereof into a Datalog program, so that large por-
tions or even the complete MLP can be evaluated using a Datalog reasoner. As a first
technique, we will show how to rewrite programs with multiple modules with empty
input into an MLP in normal form in Next, we present a general technique in
that is concerned with rewriting arbitrary MLPs into ones that have no module input
such that they can, if desired, be transformed into logic programs without modules
at all. This approach comes at a cost; in the worst case, the translation is exponen-
tially larger than the original MLP. The macro expansion technique presented in
deals with a restricted syntactic class of MLPs that do not incur this blow-up. While
macro expansion cannot be applied to general MLPs, macros are still important in the
context of converting, e.g., Datalog-rewritable dl-programs (Heymans et al., 2010) into
modular logic programs, which we will show in

Without loss of generality, we consider MLPs of form P = (m,, ..., m,,) such that
each module m; = (P;[q], R;) has at most one formal input parameter. This restric-
tion is immaterial and only serves the purpose of simplifying the rewriting rules in
this chapter; essentially, one can always transform a module with a positive number
of input predicates to one that has exactly one input predicate using module input reifi-
cation. We will show how to reify modules with an input list of arbitrary length in the

first

129




Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

6.1 Module Input Reification

We start this chapter by showing how to translate an MLP that contains modules with
more than one formal input parameter into an equivalent MLP whose modules have
at most one input parameter.

Intuitively, we can reify a module m = (P[q], R) into a module m’ = (P[q’],R") by
using a fresh predicate symbol q" whose arity is 1 plus the maximal arity of all input
predicate symbols of q. Then, the set of rules R’ contains

« module input rules that transfer input from q’ back to the predicates from q,

« module atom input rules that reify input in a single predicate p® for each module
atom e appearing in m, and

« a reified version of R such that each module atom e = Q[p].o(t) is replaced by
its reified module atom Q[ p¢].o(t).

This technique makes the restriction we made in the beginning of this chapter insignif-
icant, i.e., requiring that all modules having at most one input parameter, as every MLP
can be converted into a reified MLP while preserving their answer sets.

In the following, let P = (m,, ... ,m,,) be an arbitrary MLP such that each m; of P is
of form (P;[q;], R;). Let p be a predicate symbol from P, we define its associated arity
as a(p). For alist of predicate symbols p = py, ..., p, we let a(p) = maxp, i from p (D)
We define the set of module atoms appearing in module m (respectively, in a rule r €
R(m)) as ma(m) (respectively, ma(r)). Let € be a fresh constant symbol not appearing
in P.

Whenever a module atom has more than one input parameter, we need module
atom input rules that compress all input predicates into a single reified input parameter.

Definition 6.1 (Module atom input rules and reified module atom).
For a module atom e = P;[p].o(t) from P such that [p| > 1, we define the module atom
input rules of e as the set of rules

pe(l,Xl,...,Xa(pl), €005 € )‘_Pl(le---,Xa(pl))
a(p)—a(p1)

pe(g,Xl,...,Xa(pg), €,...,€ )&pg(Xl,...,Xa(pe))
a(p)—a(pe)

where p€ is a fresh predicate symbol not appearing in P with arity a(p®) = a(p) + 1.
The reified module atom for e is the module atom P;[ p®].o(t).

Note that € is used to fill up missing positions when defining p®(i, ... ) for predicates p;
such that a(p;) < a(p).

130



6.1. Module Input Reification

Whenever a module has more than one input parameter, we need module input
rules that transfer the reified input parameter back to their original input parameters.

Definition 6.2 (Module input rules).
Given a list of formal input parameters q; = qj, ... , i of a library module m; of P such
that k > 1, we define the module input rules of m; as the set of rules

ql(Xl, ,Xa(ql)) «— q{(l,Xl, ,Xa(ql), €,...,€ )
a(q)—alqr)

qk(Xl, ,Xa(qk)) «— q{(k,Xl, ,Xa(qk), €,..,€ )
a(q)-a(gx)

The following definition gives us reified MLPs, whose modules have at most one
input parameter.

Definition 6.3 (Reified module and reified MLP).
For any module m; from P, the reified module for m; is the module
(LR iflgl > 1
C (@il R) iflqil <1
where q; is a fresh predicate symbol with arity a(q;) = a(q;) + 1, and R; consists of

« the module input rules of m; in case |q;| > 1,

« module atom input rules for each module atom Q[p].o(t) appearing in R; when-
ever |p| > 1, and

« all rules from R; such that each module atom Q[p].o(t) € ma(m;) with |p| > 1
is replaced by its reified module atom.

The reified MLP P’ is the MLP (my, ..., m;,), where m; is the reified module for m;.

To show that reified MLPs are equivalent to general MLPs, we define the following
functions and interpretations. Let A C HBp be a set ground atoms, let p = py, ..., Py
be a list predicates, and let g be a predicate symbol. We define

rap= iq(i,c, € .s€ ) pi(C)GA§.

pj is from p a(p)—a(p;)

and

fAqp) = | gpi(c)

p; is from p

q(i,c, €,..,€ )EA} .
a(p)—a(p;)

Let M be an interpretation for an MLP P, we define incl(M) to be an interpretation M’
for the reified MLP P’ such that for all P;[S] € VC(P), we set
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« M;/S = M;/S in M’ whenever |q;| < 1 in module m; = (P;[q;], R;) from P, and
« otherwise, we set

M;/(r(S, a1, 91)) = Mi/S U r(S, qi, g;) U L roviss.p.pe)
e=Q[pl.o(t)ema(R;)

Let M’ be an interpretation for the reified MLP P’. We let excl(M’) to be the interpre-
tation for the MLP P such that for all P;[S] € VC(P'), we set

« M;/S = M;/S in M whenever |q;| < 1 in module m; = (P;[q;], R;) from P, and

« otherwise, we set

M/ ((S, 4}, q1)) = (M}/S \ HBp|y) U

7(S,q;,9) U U ravirs, pep)
e=Q[pl.o(t)yema(R;)

We can now show the following.

Proposition 6.1 (Module input reification)
Let P be an arbitrary MLP. Then, the answer sets of P correspond one-to-one to the
answer sets of the reified MLP P’.

Proor Let M and M’ be interpretations for P and P’, respectively. We first show that
both incl(M) and excl(M’) are interpretations for P’ and P, respectively. Whenever
|gi| < 1 in a module m; = (P;[q;],R;) from P, module input reification does not
change mj, thus P;[S] € VC(P) if and only if P;[S] € VC(P’). For the case |q;| >
1, the reified module m; has only one input predicate q; derived from q;. There is
a one-to-one correspondence between the value calls P;[S] € VC(P) and P;[S'] €
VC(P'), concretely S’ = r(S, q;,q;) and S = #(S’, q;, q;). Hence, P;[S] € VC(P) if and
only if P;[S’] € VC(P’). Furthermore, the call graphs CGp and CGyp/ are isomorphic:
edge (u,v) € E(CGp) if and only if edge (f(u), f(v)) € E(CGp/) for the bijection
f: V(CGp) - V(CGpr) such that

Pi[r(S,q;,q))] if|q;| > 1
f(Pl[S]) — 1 ql ql |ql| .
P;[S] otherwise
and
_ , Pi[#(S", qi,q]  if|qi > 1
f 1(Pl[S ]) — 1 ) ql ql |ql| ‘
P;[S’] otherwise

Rules without module atoms are left unchanged in reified MLPs, and using the
Horn module input rules, the rules agree on their truth values in both M and M’. Now,
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for rules with module atoms of form P;[p].o(c) € ma(gr(R;)) such that q; is the input
list of Pj[q;], we distinguish the case |q;| < 1,and |q;| > 1. In the former case, module
input reification leaves the module atom unchanged, therefore they use the same value
call in the respective call graph to determine their truth value, and thus M, P;[S] F
Pj[pl.o(c) if and only if M’, P;[S] F Pj[p].o(c). In the case |q;| > 1, module input
reification changes P;[p].o(c) € ma(gr(R;)) to Pj[p®l.o(c) € ma(gr(R})) for e =
Pj[pl.o(t) € ma(R;). The Horn module atom input rules transfer the extension of each
predicate p in p to the predicate p®, and given that the call graphs are isomorphic using
f, we arrive at identical value calls in both P and P’. The Horn module input rules then
dissect the extension of predicate q;- to the respective predicate g from q;, and we get
that corresponding rules are true in both M and M’ for P and P’, respectively. Hence,
the truth of a ground module atom P;[p].o(c) € ma(gr(R;)) in M for P coincides with
the truth of the corresponding ground module atom P;[p®].o(c) € ma(R;) in M’ for
P’. Thus, the rules in f P(P;[SPM coincide with the rules in f P'(P;[S')™’, and thus
M is an answer set for P if and only if M’ is an answer set for P’. 0O

Note that applying module input reification to an MLP P = (my, ..., m,) adds at
most 7 — 1 new predicate symbols g; and their module input rules for all library mod-
ules m; of P. If a library module m; has input q; such that |q;| = j, then there will be j
module input rules for m;. Then, if the modules of P contain k module atoms ey, ..., e,
at most k new predicate symbols p®l, ..., p®k will be introduced together with their
module atom input rules. Module atoms e; having input list p; such that |p;| = ¢, give
us ¢ additional module atom input rules in a module of P. The modification of module
atoms to take p® as module input does not increase the overall complexity.

Main modules and library modules with at most one input parameter do not change
their input signature and will not receive additional module input rules. The same
is true for rules with module atoms with at most one input parameter, which do not
change and therefore do not require to add module atom input rules to our MLP. There-
fore, whenever an MLP has only modules with at most one formal input parameter,
module input reification leaves the MLP untouched.

6.2 Rewriting Modules without Input

In this section, we define a simple syntactic restriction for modular logic programs:
there is exactly one module without input, the main module. This does not impose a
strong limitation in writing MLPs, as we will see below that every MLP can be reduced
with a linear rewriting step into its normal form. The rewriting methodology generally
comes in two stages: we combine all rules from all the input-less modules to a fresh
main module mg, and then exchange in the rules of the remaining modules calls to
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the former input-less modules to calls to the fresh main module m,. We now begin by
defining a normal form for modular logic programs.

Definition 6.4 (Normal form).
An MLP P = (my,...,my) is in normal form, if exactly one module m; of P has no
formal input parameters, i.e., m; = (P;[], R;).

Note that Definition 3.2/ then implies that module m; must be the main module for P.
In order to rewrite MLPs to their normal form, we first define a normalization
procedure for atoms and rules of a module.

Definition 6.5 (Module normalization).
For an atom a appearing in a module m = (P[q],R) of MLP P = (my,...,m,), we
define

a a is of form p(t) or P;[p].o(t) ,
N(a) =
Py.o(t) ais of form Pj.o(t) .

Given a rule r € R of form from a module m = (P[q], R), we define the rule

NF)=a; V- Vag < NGB, ... NBm)s (6.1)
not N(Bi41)s - s 00t N(B,), '

and for a set of rules R we define N(R) = {N(r) | r € R}. For the module m we let
N(m) = (P[q], N(R)) .

The next definition shows how to normalize an MLP P.

Definition 6.6 (MLP normalization).

Let P = (my, ..., m,) be an MLP such that each module m; = (P;[q;], R;) from P has at
most one input parameter g;, and let Iy = {m;,, ..., m;, } be the set of all modules from
P that have no formal input, and I; = {mj1 s mjn_k} be the modules with exactly one
input parameter. We define the MLP normalization N'(P) of MLP P to be the MLP

N(P) = (mo, N(m,), ..., N(m,_,)) ,
where m, is the fresh module (Py[], Ry) with Ry = UmeIO N(R(m)).

Note that I is always nonempty, as every MLP has a main module. Applying mod-
ule normalization on an MLP that is already in normal form does not change the call
structure, it simply replaces the single main module, say m;, with a new module m,
and replaces each call to m; with a call to m,. That is, normalizing simply renames
Pi[] to Po].

We can now show that every MLP P can be transformed into an equivalent MLP
N'(P) that is in normal form. Without loss of generality, we assume for the next result
that each ordinary atom from P has a label identifying the rule base it appears in: for
a module m;, each ordinary atom in R(m;) is of form pi(b).
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Lemma 6.2
The answer set of MLP P correspond one-to-one to the answer sets of MLP N'(P), i.e.,

« for every answer set M of P, there exists an answer set M’ of NV'(P) such that

M,/ = U Mij/Q, and (6.2)
mijEIo
M{/S:Ml’/SfOI‘ m; EIl (63)

« for every answer set M’ of V(P) there exists an answer set M of P such that

Ml/S = M{/S for m; e Il’ and (64)
M,;,/@ = {a'i € M}/@} for m;; €1 - (6.5)

Proor (=) Let M be an answer set of P. We show now that there exists an answer
set M' of V(P) such that (a) M E f I\ (P)M , and that (b) M’ is a minimal model of
Fne™.

We start with Let ' € f N(P)P;[SDYV for m; € I,. For the rule r such that
N(@)=r"andr =r', all calls in r" and r do not access module m,, respectively some
m;; € I. By construction of M’, we can conclude that r € f P(P;[S])M. In case r # 1/,
one module atom a’ = Pj.0(c) must appear in B(r"). Leta = Pl-j.o(c) be the atom such
that V(a) = a’, we have that m;; € I. From we can conclude that o(c) € M,/@
iff o(c) € Ml-j/Q. Therefore, r € fP(P;[S])M. In both cases, we can conclude that
M’ E fN(P)(P;[S])™ since M is a model for all rules in f PM.

Letr’' € fN(P)(PO[Q])M/ such that ' = N(r) for a rule r from m;; € I,. All
atoms in B(r') are satisfied by M/@. We have that for atoms a’ € B(r') with the
corresponding atom a € B(r) such that N'(a) = ad’, eithera = a’ ora # a’. In
the former case, a is ordinary and from m;;, or a is a module atom P;[p].o(c) calling
m; € I, from m;; € Io. Thus, M, Pij[®] Faiff M', Py[@] E a’, which follows from (6.2)
and (6.3). In case a # a’, @’ is of form Py.0(c) for a module atom a of form Py.o(c)
such that my, € I,,. From we can conclude that o(c) € M/@ iff o(c) € M /D.
Therefore, M', Py[@] E a’ iff M, Pi[@] F a. In both cases, we can now conclude that
r e fP(Pl-j[Q])M, and since M kE fPM, we get M’ fN(P)(PO[Q])M,.

Since M" E f V' (P)(Pi[S])M, for all P;[S] € VC(IV(P)), we have shown that M’ E
Fve.

Next, we consider To show that M’ is a minimal model of f N (P)Ml, we must
ensure that there is no interpretation M” such that M” < M’ and M” k f N(P)".
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Towards a contradiction, assume M” satisfies f N (P)M’. AsM” < M’, we consider
the following cases: (1) for some M; /S with m; € I, we have that M;'/S C M]/S; or
(2) we have that M(j/@ C M()/D.

Let N denote an interpretation for P such that N;/S = M]'/S for m; € I, thus
N;/S = M;/S = M;/S. Furthermore, for my; € Iy, let Ni,/@ = {ad'i € M}/}.

From the construction of M} /S in case (1), and of M /@ in case (2), we can now de-
duce that N;/S C M;/S for case (1), and that N;,/@ C M;,/@ in case (2). Hence N < M,
and from M being a minimal model of f PM, we get in both cases that N, P;[S] ¥ f PM
and N, Pij[Q] ¥ fPM, respectively. There is a rule r € fP(P;[S]) (respectively,
r € fP(Pij[Q])M) such that N, P;[S] ¥ r (respectively, N, Pij[Q] ¥ r). From the
construction of M;/S (respectively, M,/@), we can deduce that there must be a corre-
sponding rule r' € fN(P)(P; [SPM (respectively, r' € fN (P)(PO[Q])M/) such that
r' = N(r). But now we arrive at a contradiction, as in case (1) M", P;[S] ¥ r’ and
in case (2) M", Py[@] ¥ r'. Thus, M” does not satisfy fN(P)(Pi[S])M, (respectively,
FN@P[aD™).

Therefore, in both cases (1) and (2) we can conclude that M’ is a minimal model of
FNE@M.

(&) Let M’ be an answer set of N'(P). We show now that there exists a corresponding
answer set M of P such that (a) M E f PM, and that (b) M is a minimal model of f PM.

Consider Let r € fP(P;[S]M for m; € I,. For the rule r’ such that N'(r) = r’
and r = r’, all module calls in r’ and r do not access module m respectively some
m;, € Io. By construction of M in (6-4), we can conclude that ' € f N(P)(P;[SHV'.
In case r # r’, one module atom a’ = Py.o(c) must appear in B(r'). Let a = Pij.oij(c)
be the atom such that N(a) = a’, we have that m;; € Io. From we can conclude
that o%(c) € M,/ iff o'i(c) € Mij/Q. Therefore, ' € f N (P)(P; [SD™'. In both cases,
we can conclude that M E f P(P;[S])M since M’ is a model for all rules in f N (P)M,.

Letr € f P(Pij[Q])M such that ¥’ = N(r) for a rule r from m;; € I,,. All atoms in
B(r) are satisfied by M i /@. We have that for atoms a € B(r) with the corresponding
atom a’ € B(r") such that N'(a) = a’, eithera = a’ ora # a’.

In the former case, a is ordinary and from m;;, or ais a module atom P;[p].o(c)
calling m; € I from m;; € Io. Thus, M, Pij[Q] F aiff M', Py[@] F a’, which follows
from and (6.5).

In case a # a’, a’ is of form P,.0%(c) for a module atom a of form Py.0¥(c) such
that my; € I,. From we can conclude that o¥(c) € My/@ iff o*(c) € M, /®.
Therefore, M', Py[@] E a’ iff M, Pi[@] E a. In both cases, we can now conclude that

r' € fNP)B,[BDM, and since M’ £ f N(P)™, we get M E f P8, [G]D™.
Since M E f P(P;[S]M for all P;[S] € VC(P), we have shown that M E f PM,
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We show next. To show that M is a minimal model of f PM, we must ensure
that there is no interpretation M” such that M” < M and M” k f PM.

Towards a contradiction, assume M” satisfies f PM. As M” < M, we consider the
following cases: (1) for some M /S with m; € I;, we have that M;' /S C M;/S; or (2) we
have that for m;; € I, M{;/@ C Mij/Q.

Let N denote an interpretation for N'(P) such that N;/S = M/ /S for m; € I, thus
N;/S = M;/S = M;/S. Furthermore, let No/@ = Umijelo{aij € M{;/@}

From the construction of M;'/S in case (I), and of M l’; /@ in case (2), we can now
deduce that N;/S € M;/S for case (1), and that No/@ C My/@ in case (2). Hence
N < M/, and from M’ being a minimal model of fN (P)M/, we get in both cases
that N, P;[S] ¥ fN (P)M, and N, Py[@] ¥ fN (P)M,, respectively. There is a rule
r' e fNP)PSDM (respectively, ' € f NP)(Po[@]™) such that N, P;[S] ¥ r’
(respectively, N, Po[@] ¥ r’). From the construction of M;/S respectively Mij/ D,
we can deduce that there must be a corresponding rule r € f P(P;[S])M
r e fP(Pij[Q])M such that r' = N(r).

But now we arrive at a contradiction, as in case (1) M”, P;[S] ¥ r and in case
M", B, [@] ¥ r. Thus, M" does not satisfy f P(P;[SIM (respectively, f P(BJ[Q])M).

Therefore, in both cases (1) and (2) we can conclude that M is a minimal model of
fPM O

Example 6.1 Consider the MLP P = (m;, m,, msz), where m; = (P;[],R;) is a main
module, m, = (P,[],R,) is an input-less module, and m; = (P5[q/1],R3) is a library
module. The rules are

respectively

. Rl = {a «— P2.0, C <« P3[a].b};
« R, ={0 < notp, p < noto};and
] R3 = {b <« Pz.O}.

The normalization of P is the MLP V' (P) = (mg, N'(m3)), where my = (Py[], Ry) is the
new main module, and N'(ms) = (P3[q/1], N(R3)) is the normalized library module;
the rule bases are as follows:

« Ry ={a < Pyo, c<« Pslal.b o0« notp, p « noto}and

« N(R;) = {b « Py.0}.

6.3 General MLP Rewriting Techniques to Datalog

This section is split into three parts, each of them describe a rewriting technique for
MLPs: instance rewriting, call rewriting, and module removal of connected closed call sets.
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The approach for the instance rewriting translation is the following. Given a set S of
modules from an MLP P, we create for each module of S a fresh module without input
parameters. Fresh modules get auxiliary rules and rewritten rules from their original
modules such that the adapted rules encode the value calls of the original module using
extra parameters in each atom. Additionally, in case a module from S calls another
module from S, the module atom will be adapted to call the fresh module without
input parameters. Thus, the outcome of the instance rewriting will be an extension of
P that includes a clone of S, which preserves the call structure in S. The call rewriting
translation goes one step further and separates the original modules from the cloned
modules completely, thus the result of applying call rewriting to P will be an MLP that
has two parts: a cloned part, whose modules have no input parameters and resemble
the original MLP in call structure and answer sets, and a degenerated original part,
whose call structure has now been torn apart. After call rewriting, we can take off the
original part from P and receive an MLP without input parameters using the module
removal technique.

6.3.1 Instance Rewriting

We now start to define the instance rewriting translation. Let m = (P[q],R) be a
module of P and ¢ > 0. We define for the list of distinct variables B = B, ..., B,_; the
list of unary atoms

bit(B) = bit(By), ..., bit(B,_;) ,

where bit is a fresh predicate symbol not appearing in P. We define the set of module
atoms appearing in module m (respectively, in arule r € R(m)) as ma(m) (respectively,
ma(r)).

For the integer k > 0, we define bposy: €€ — {0, ...,|C¥| — 1} to be a bijective
function that sends a k-tuple ¢ € € to an integer from {0, ..., |€¥| — 1}. When clear
from context, we omit k from bpos. We define

bV(C) = Bo, ’Bj—l’ bj,Bj+1, ,B|@k|_1

to be the list of terms such that b; = 1 for j = bposy(c) and for each i; # i, we have
that B; and B;, are pairwise distinct variables.

Intuitively, both b1t(B) and bv(c) allow us to inflate ordinary predicates appear-
ing in a module such that the inflated tuple pinpoints to a value call in the call graph
CGp for an MLP P. While the atoms bit(B) will be used to bind the variables B; to
0 and 1, the list of terms bv(c) is then added to each inflated ordinary atom from the
input list g of the module m.

Example 6.2 Let ¢ = (a5, ag, ag) be a triple formed from € = {ay, a;, ..., ag}. Hence,
|G| = 10 and the set of all triples over C is of size |@3| = 103> = 1000. We can now
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use bpos;(+) to encode c as integer as follows: given the triple (a;,,a;), a;,) € 3, we

let bposs(a;,, a;,, a;,) = 10% - iy + 10" - iy + 10° - i3 and its inverse be bpos3'(N) =
N N N

(lﬁJ mod 10, lﬁJ mod 10, lﬁJ mod 10). Thus, we get bposs(ay, ag,ag) = 789,

and for the inverse function bpos31(789) = (a5, ag, ag). Moreover, the list bv(c) has

length 1000 and consists of the terms By, ... , Bgg, 1, B79gs --- » Bggg-

In general, given the set of constant symbols € = {a,...,a,_1} we can encode
k-tuples ¢ = (a;,, ..., @;, ) with

k
prSk(ail, . aik) = Z l] . nk_J
j=1

and
N N N N
-1 —
prSk (N) = <lnk_1 J mod n, lmJ mod n,.., lFJ mod n, lﬁJ mod }’l) .

As a first step, we define functions that, given a module m of P, produce rules that
prepare the input for m with J(m), and generate rules that mimic the value calls with
VR(m), which is based on the module atoms appearing in m. Both J(m) and VR(m)
generate new auxiliary rules not appearing in R(m).

For the following definitions, let B = B, ... s Bielalj—1 be a list of pairwise distinct

variables of length |C!9l].

Definition 6.7 (Input rules and value rules).
Given module m = (P[q], R), we define the input rules of m as the set of rules

I(m) ={ q(c,bv(c)) < bit(B) |ce Cll} .

For a module m, we define the value rules of m as the set of rules

vR(m)= | VRu(e) .

e€ma(m)
where

valy(c,1,B) < p(c,B),bit(B)

VRm(P|plo(®) = g valy(c,0,B) < not p(c,B), bit(B)

|ce€|l’|§ .

Example 6.3 (cont’d) Consider an MLP P = (my, ..., m,) with C as in
Let m; = (Pj[q],R;) be a module from P such that R; consists of the following two

rules:

0 <«

p(X1,X5,X3) < Pj[plo,q(X;, X5, X3)
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We get for J(m;) the following set of rules:

q(ag,ap,ag, 1, By, By,...,Byg7, Bgog, Bggg) < b1t(By),..., 01t (Bygg)
q(ag,ap,a;, By, 1,B;,..,Bg97, Bggg, Bggg) < bit(By),...,b1t(Bygy)

q(ag, a9, a8, BO, BI,BZ, eee ,B997, 1, ngg) «— bit(BO)’ eee g bit(ngg)
q(ag, ag, dg, Bo, BI’ Bz, ey B997, B9989 1) «— blt(Bo), vee s blt(ngg)

and for the module atom e = Pj[p].0, we get the following rules for VR, (e):

valy(ag, Ao, ag, 1, By, ..., Boggg) < p(ao, Ao, g, By, --- » Bogg),
bit(By), .., bit(Boss)

valy(ay, ag, ag, 0, By, ..., Bagg) < not p(ay, ag, ay, By, - , Bggo),
bit(By), .., bit(Boss)

valp(ay, ag, ag, 1, By, .. , Bygg) < p(ag, ag, ag, By, .. , Bygg),
bit(By),..., bit(Bygg)

valp(ag, ag, ag, 0, By, ..., Bygg) < not p(ag, ag, Ay, By, ... ; Bygy),
bit(By),..., bit(Bygg)

Next, we define the translation B(m) that takes the rules of module m and rewrites
them to rules of the same form, but with atoms of higher arity, whose purpose is to
encode module instantiations of the value calls.

Definition 6.8.
For an atom a appearing in a module m = (P[q],R) of MLP P = (my,...,m,), we

define

p(t,B) a is of form p(t) ,

a is of form P;[p].o(t), where V*

B,(a) = . a
" Fryjo(t,V9) is a list of distinct variables of length |CIP!| ,

a a is of form P;.o(t) .

Note that B,,(a) distinguishes between module atoms a with and without input:
an atom from the former category will be rewritten to a module atom that calls a
module not present in P, while a module atom from the latter class will not be rewritten
and still calls the same module from P.
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Definition 6.9.
For a module atom e = P;[p].o(t) appearing in m, we define the list of atoms
V@m(e) = Valp(cl, ‘/bepOS(Cl)’ B), ey Valp(cu, Vbepos(cu)’ B) )

where CP! = {cy,...,c,}. Given a rule r € R(m) of form (3.2), we can now define the
rule

Bm(r) = Bm(al) VeV Bm(ak) < Bm(ﬁl)a ey Bm(ﬁm)a
not Bm(6m+1)a ..., ot Bm(ﬁn)’ (6-6)
bit(B), VCp(ey), ..., VCy(e,) ,

where ma(r) = {ey, ..., e,}. Furthermore, we let
B(m) = {B,,(r) | r € R(m)} .

The module instance rewriting of m is then given as I (m).

Definition 6.10 (Module instance rewriting).
For a module m, we let the module instance rewriting 7 (m) of m be the set of rules

T (m) = {bit(0) <, bit(1) <} U I(m) U VR(m)uU B(m) .

Example 6.4 (cont’d) Continuing our example above, we get for B(m;) the set of
rules
0(By, .-, Bogg) « bit(By), ..., bit(Bygg)

P(X1, X5, X3, Bos - s Bogg) < By j[P].0(VG, ..., Vage), (X1, X2, X3, Bo, - » Bgg)s
bit(By), ... , bit(Bggg),
valP(CO’ Vbepos3(cl)’ Bo. .- Bogo),

Valp(C999, ‘/bepOS_:,(ngg)’ B(), ses ngg)
Note that 83 = {Co, vee s ngg} = {(ao, Ao, ao), ey (ag, dg, ag)}, thus we obtain for

bposs(cg), ..., bposs(cggg)

the sequence 0, ..., 999. Then, T(mj) contains the facts

bit(0) «

bit(1) «
all rules from[Example 6.3| and B(m ;)- Intuitively, for the module atom e from module
m;j, the atoms of form valp(ci, Vbepos3(c,-)’BO’ «e»Bggg) (i € {0, ...,999}) in this example

encode with the list of variables V¢ = Vg, ..., V59 and B = By, ..., Bggg the self-call of
m;, that is, that the value call P;[T] calls P;[T’]. This means that B encodes T in the
calling P;[T], and V¢ encodes T’ in the called P;[T"].
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The module instance rewriting J°(m) is a set of rules that might contain module
atoms of form B, j.o(t, V%), ie., a call to a module that does not belong to the MLP P.
Thus, without the perspective of P, and without further translated modules from P that
are getting called by J°(m), the module instance rewriting does not complete the pic-
ture of the instance rewriting translation. Hence, we further need the means to specify
inter-module dependencies in an MLP, i.e., those modules from P that are getting called
by certain modules, which in turn might call further modules from P. Intuitively, given
amodule m; of P, we will refer to a set of modules as closure with respect to m; when it
fulfills certain conditions for calling other modules, but never call modules that do not
belong to the closure. A (connected) closed call set is then based on the closure, and
further requires all those modules from P to be included in the closed call set whenever
they call modules from the closure. These notions will then be used to define instance
and call rewriting below, and are necessary to rewrite modules with J7(-) in order to
build a new MLP that contains P and the rewritten modules with their dependencies.
We define now formally closure and closed call sets. In the following let pc(m) denote
the set of modules {m; | P;[p].o(t) € ma(m)}.

Definition 6.11 (Closure and (connected) closed call set).
For a given module m; of an MLP P we define the closure clp(m;) of P with respect to
m; as the smallest set S such that

« m; €S, and
- forallm; € S, pc(m;) C S.

Given an MLP P and a module m; of P, a closed call set with respect to m; is a set of
modules S of P such that

« m; €8S, and
- forallm; € S, clp(m;) C S.

The connection graph of P is the undirected graph Cp = (V,E) such that V' C
{my, ..., m,} consists all library modules of P and E = {(m;,m;) € VXV | m; €
pc(m;)}. A closed call set S is defined to be connected if S is a connected component
Of CP'

Note that for a given module m;, pc(m;) only contains modules with a nonempty
input list (i.e., library modules). The closure clp(m;) and closed call sets based on it
contain modules with empty input list only if m; has no input. Connected closed call
sets never contain modules without input, as the vertices of the connection graph Cp
only contain library modules; thus, the vertices of Cp can only be a proper subset of
the modules of P, as at least one module of P must be a main module. The closure
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clp(m;) of the MLP P with respect to the module m; is the least closed call set with
respect to m;.

Example 6.5 Let P = (m,, m,, m3, my, ms) be an MLP such that

my = (P[], Ry ={a « P,[a].b,Ps[a].c})
m, = (P3[q,], R, = @)

ms = (P5]qs], R3 = {c « P,[c].b,P,.d})
my = (Pyl], R4 ={d < P,[d].b})

ms = (Ps[gs], Rs = {e « P,[e].b})

shows the call structure of the modules in P: modules represent nodes in
the directed graph, and edges from module m; to module m; are present whenever m;
has a module call to m;. The graph shows main modules as white nodes, while library
modules are gray:.

Given module m,, the nodes inside the dotted area in represent the
closure clp(m,), which is the set of modules {m;, m,, m;}. The nodes attached to thick
edges display all the modules that are members that belong to one of pc(m,), pc(m,),
and pc(ms;). The reason for my & clp(m,) is that m, has no input list and therefore it is
not captured by pc(ms), whereas module ms & clp(m;) because ms has no incoming
call from modules in clp(m;).

We can now define the instance rewriting with respect to a closed call set.

Definition 6.12 (Instance rewriting).

Let P = (my, ..., m,) be an MLP, let m; be a module from P, and let S = {mil, s mih}
be a closed call set with respect to m;. The instance rewriting of MLP P with respect to
closed call set S is the MLP

IRp(S) = (My, .., My, My 15, My )

where m,’Hj = (Pn+j[],9'(mij)).

We will refer to the fresh modules m,, F from IRp(S) as shadow modules, and call
the set {my, 1, ..., m,,_,} the shadow of IRp(S).

Example 6.6 (cont’d) Let P = (my, ..., ms) be the MLP from [Example 6.5/and let S =
{my, m,, m3, ms} be a closed call set with respect to module m;. The instance rewrit-
ing of P with respect to S is the MLP IRp(S) = (my, m,, mz, my, ms, mj, ms, ms, ms),
where m; = (B[], 7(m;)) (for simplicity, we will not use the index i in S to name

ms). shows the inter-module dependencies of IRp(S), where S = clp(m;) U

{ms} is shown using the dash-dotted area, and the shadow modules m;, m;, m;, ms for
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(a) Inter-module dependencies of MLP P

msy ClP(ml)

(b) Inter-module dependencies of MLP IRp(S)

Figure 6.1: Instance Rewriting

S are within the dashed area. As can be seen from the graph, the sub-structure defined
by S from the original MLP P is preserved in the shadow, except for the incoming call
from m, to mj.

In order to show the next lemma, we define for a module m; = (P;[q;], R;) the
bijective function bs;: {0, 19l 214} that sends b € {0, 119! to the set of atoms

bs (b) = {g;(c) | ¢ € €19 Ak = bpos(c) A by = 1}

and bs;l(A) = b be its inverse function for a set of atoms A C HBp|g,. Intuitively,

bs j(b) includes only those q(c) where bit by for ¢ is 1, whereas bs;l(A) gives us the
list of bits corresponding to the set A. We can now show the following.

Lemma 6.3
If M is an answer set of MLP P then there exists an answer set M’ of the MLP IRp(S)
such that M’ coincides with M on the value calls of P, where
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. M}/T = M;/T, for all P;[T] € VC(P); and
« M, ./@,for j €{1,..., h}, consists of

n+j
{bit(0), bit(1)} U (6.7)
{g,(c.b) | c € ' Ab €10,1F A bypos(e) = 1} u (6.8)
{a(e,b) | b€ {0, 1" AT = bs;,(b) A a(c) € Mij/T} U (6.9)
Plplo(dema(m;,) {valp(c’ b ;i C;zlij/(\bl; ii(’)(,cl)}ZM i;/T } U (610)

){valp(c, 0,b) | ;e:ilij/(\bl; f;(z;;};AMij/T } (6.11)

P[p].o(t)ema(mij

Proor Let M be an answer set of P.’We show now that there exists an answer set M’ gf
IRp(S) such that (a) M’ E f IRp(S)™, and that (b) M’ is a minimal model of f IRp(S)™ .

We begin With By construction of IRp(S), CGp is a strict subgraph of CG,(s)
such that some value calls from VC(IRp(S)) \ VC(P) have edges going to VC(P), but
CGygy(s) cannot have an edge from a value call in VC(P) that ends in VC(IRp(S)). Thus
we can split IRp(S) into a part M;/T of M’ that corresponds to P, and a part M, , ;/@,
1 < j < h, of the shadow {m;, 1, ..., m,,_,} for the closed call set S = {mi, ..., mih}.
Hence, M’ F f IRP(S)M,, as the part that is identical to M satisfies M, P;[T] F
fIRP(S)M/ for all P;[T] € VC(P). Furthermore, the part My, ,/@, ..., M, /@ of

M’ satisfies M', B, ;@] F f IRP(S)MI corresponding to shadow modules m,, i =
(B 11, T (mg)) for 1 < j <

« for each my,, ; we have that satisfies {bit(0) <, bit(1) <} from I]'(mij);

« by (6.8), all rules from J(my,) are satisfied: let r' € grnd(J(my,)), as {bit(0),
bit(1)} C M;Hj/@, we have that B(r") is satisfied by M. To see that H(r") is also
satisfied, consider a ground substitution 6 such that B(r") = bit(B)6 = bit(b).

Hence, forc € C"qif', we have that bv(c)@ = b such that bypo5() = 1. This means

that H(r") = qij(c, bv(c))6 = qij(c, b), and by construction of (6.8), we get that
H(r'") is also satisfied by M.
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e f VR(mij)M’ is satisfied by M': let p be the input predicate from module atoms

appearing in m;;. In case p(c) € M; T by (6.10) we get that valy(c,1,b) €
M, J/Q such that T = bs; (b) Otherw1se for p(c) & M; /T we have that
valp(c,0,b) € My, ;/@ by (6.11) such that T = bs; (b) By (6.9) we have p(c) €

M; /T iff p(c,b) € Mn+1/® such that T = bs; (b) Consider r' € fV.’R(ml ) ’,
and a ground substitution 8 such that B(r") :) bit(B)6 = bit(b). As both
atoms {bit(0), bit(1)} C M;Hj/@, we have that b1t(b) from B(r’) is satisfied by
M'. We distinguish two cases: (1) r’ is of form valp(c, 1,b) < p(c,b),bit(b), or
(2) r' is of form valy(c, 0, b) « not p(c,b), bit(b). In case (1), we have p(c,b) €

n+]/® from fIRP(S) and therefore p(c) € Mij/T by the set (6.9). Hence,
by (6.10), we get that valp(c, 1,b) is contained in M}, , ;/@, thus M' By jlolET.

Otherwise, in case (2), we have p(c,b) & M, , j/@ from f IRP(S) " and therefore
p(e) & M;,/T by . Thus, we can deduce from (6.11) that val,(c,0,b) €

n+1/® and so M, B, ;[@] F r'. Therefore, all rules from f VfR(mij)M, are
satisfied by M.

/
: let ¥’ be a rule from

we have that 6.11) satisfy all rules from f B(m,, J)

fB(mn+j) " such that {blt(b)} C B*(r'). By construction of 23(m;1+j), r =
B, (r) for a ground rule r € grnd(R(mij)). AsM', B, ;[@] F B(r'), we need to
show that M', B, ;[@] F H(r') in order to get that M', B, ;[@] F r'.
First, we show M’,P{j [T] k B(r) and M’,Pij [T]|FH@r)for T = bsij(b). Leta €
B(r). We consider three cases: (1) a is of form a(c), (2) a is of form Py [p].o(c),
or (3) a is of form Py.o(c). In case (1), we can deduce that there is a correspond-
ing atom a(c,b) € B(r'), therefore by (6.9), we get M', B, ;[@] F a(c,b) iff
M',Pij[T] F a(c). For case (2), we have a corresponding module atom a’ =
B, k-0(c,v) € B(r'") such that for the ground substitution 6 with {bit(B)}0 =
{bit(b)} C B*(r') and for the ground substitution o mapping each variable V¢
tov, fromvforu €{1,..., |€|P||} it holds that

VCp, (@) = {val,(c', V; b)| ¢ € clPllo

bpos(c’)’

Since M, B, j[@] F v for all atoms v € VCp, (a)f0, in case a’ € B*(r"),

M’, B, ;[@] F @', and thus we get M', B[ 2] |=Jo(c, v), whereas in case a’ €
B~(r'), we have M', B, j[@] ¥ a’ and thus we get M', B, ¢ [@] ¥ o(c,v). As
M', B, [@] E o(c,v) iff M', P [T'] F o(c) for T' = bsy(v), we can deduce that
M/, P [T] F afor a € B*(r) (respectively, M’ [T] ¥ a for a € B~(r)) with
the followmg argument. From (6 (respectlvely, (6.11)), it follows that p(c) €
M; /T iff valy(c,1,b) € Mn+]/® (respectively, p(c) & M; /T iff val,(c,0,b) €
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M, j/®). Hence, (Mij/T)|%k = bsy(v), as for all v, = 1 from v we get gi(c') €

bsi(v) such that u = bpos(c’), and for each val,(¢’,1,b) € M;lﬂ-/@ we get
that p(c¢') € Mij/T and so qi(c’') € (Mij/T)|%k. Thus, M, B, [@] F o(c,v)
ifft M, Pi[T’] F o(c), and therefore M, B, ;[@] F a’ iff M’,Pij [T] E a. In
case (3), we have that a € B(r’). Now from M',B,,[@] F a we immediately
get that M’,Pij[T] F a as for any T, (Mij/T)|8 = @, and thus o(c) € M, /@ iff
M',B,,[0] F a.

Now, as M’, Pij [T] E B(r), and since M is identical to M’ for each Pij [T] € VC(P),
we can deduce thatr € f P(Pij [TDM. And since M is an answer set of P, we must
have that M and thus M’ is a model for r as M/, Pij[T] F B(r), we can conclude
that M’,Pij[T] F H(r) as was the claim. Now from this, since T = bsij(b), we
get that M', B, ;[@] F H(r"), as for any a(c) € H(r) such that a(c) € Mij/T,
we have a(c,b) € H(r') by construction of B(m;Hj) and a(e,b) € M, ;/@
by (6.9).

In conclusion, we have that both M', B, ;[@] F B(r') and M', B, ;|@] F H(r"),

hence M', B, j[@] F ' for all ¥’ € f B(m, )M/

n+j

We considernext. To show that M’ is a minimal model of f IRP(S)M,, we must
ensure that there is no interpretation M” such that M” < M’ and M” k f IRp(S)™ .

Towards a contradiction, assume M” satisfies f IRp(S )M,. AsM” < M’, we consider
the following cases: (1) for some M}/T with k < n we have that M} /T C M, /T; or
(2) we have that MZ+j/® C M, ;/@ for some j € {1, ..., h} (recall that j corresponds
to an index for a module from the closed call set S = {mil, . mih}).

In case (I), let N denote an interpretation for P such that Ni/T = M}//T for all
Py [T] € VC(P): hence we have that N < M. As the modules m,, ..., m,, from IRp(S) do

not call the shadow modules m,, j for j € {1, ..., h}, it holds by construction of M’ that

for all P,[T] € VC(P), f P(P[THM = f IRp(S)(Pi[TDH™ and N, P[T] E f P(P[T]M;
it follows that N k f PM, which contradicts minimality.

In case (2), let N denote the interpretation for P such that for all R, [T] € VC(P)
with m;; € S, we set

Nij/T = {a(c) € HBp | a(c,b) € My, ;/@ A bs(b) =T} (6.12)

and Ny /T = M} /T for all modules my, from P such that m; & S. From our assump-

tion that M” satisfies f IRP(S)MI, if {bit(0), bit(1)} £ M, ;/D or there exists an atom

a € M;Hj/@ of form val,(c,0,b) or val,(c,1,b) such that a ¢ M,’1’+j/®, then we

get a contradiction for M” F f IRP(S)M/, as M” would not satisfy all the rules from
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{bit(0) «, bit(1) <} respectively f Vﬂ%(mij)M, of T(mij). Therefore N < M, as there
must be an atom a(c) € Mij /T such that a(c) & Nij /T, which follows from M"” < M’
in case (2) and the construction of N in (6.12). For b = bsl-;l(T), we have now that
atom a(c,b) € M;Hj/@ and a(c,b) & M;;_H-/@. This atom a(c, b) must be from (6.9).
Since M is a minimal model of fPM and N < M, we must have that N & fPM.
Hence, there isaruler € f P(Pij [TDM such that N ¥ r, thus N, E}.[T] F B(r) and

N, Pij[T] ¥ H(r). As M’ is a model of f IRP(S)M, and by construction of M, there
must exist a rule ¥’ € fIRp(S)(B,4 j[Q])M, such that for the ground substitution 6
with {b1t(B)}6 = {bit(b)}, we have that r' € grnd(Bmij(r)G). As N, Pij [T] E B(r),
we get by construction of N that M", B, ;[@] F B(r’), and as N, Pij[T] ¥ H(r)
we can derive that M", B, ;[@] ¥ H(r'). Therefore, M", B, ;[@] ¥ r’. But since
r'" € fIRp(S)(B,,+ j[®])M', we conclude M" ¥ f IRP(S)M/, which contradicts our as-
sumption that M” is a model for f IRp(S )M,. We therefore deduce that M’ is a minimal
model for f IRP(S)MI. O

6.3.2 Call Rewriting

This section is concerned with the call rewriting translation for MLPs, which is an
adaption of instance rewriting that allows us to completely isolate the modules from
a connected closed call set S with modules that are not contained in S. In the follow-
ing, we let P = (my, ..., m,) be an MLP, m; = (P;[q;],R;) be a module from P such
that |q;| < 1, and S = {m;,...,m;,} is a connected closed call set with respect to m;
(recall Definition [6.11).

Definition 6.13 (Value rules).
Let m be a module of P, we define the value rules of m with respect to a connected closed
call set S as the set of rules

VRS(m) = | J U vRa@lplow) .

mij es Pij [pl.o(t)ema(m)

Note that we only consider module calls Pij [ p].o(t) with one input parameter, i.e., for
m calling library modules m;; € S.

Next, we define call redirection, which replaces calls to modules from the connected
closed call set S with calls to their accompanying shadow modules.
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Definition 6.14 (Call redirection).
Given an atom a appearing in a module m = (P[], R) without input parameters, we
define

a is of form p(t) or of form Py[p].o(t), |p| < 1,

such thatm; € S ,
Cm(a) =

Pi’H—j'O(t’ Va) ais Of fOI'm B] [P]O(t), |p| S 1, SUCh that mij e S,

where V¢ is a list of distinct variables of length |CIP!] .
Given a rule r € R of form (3.2), we can now define the rule

E50) = @ VoVt B, s Ca (B, 1L E By, 0L CSa (B,
Ve, (e1), ..., VC,,(e,) ,

where ey, ..., e, are those module atoms from ma(r) such that e, is of form Pij [p].o(t)
with m;, € S. For a module m, we let

C5(m) = {Ch(r) | r € R(m)} .

Note that we only consider module calls ey, ..., e, in C5,(r) that have an input param-
eter, which are library modules by definition. Module calls e, to input-less (main or
library) modules from S do not need to be guarded with VC,,(e), as C5,(e) is already
fixed and does not need to select the right module instance for accessing the output
atom. Such modules can only occur in S if they are used to build a closed call set; for

instance, module m; from is such a module.

The module call rewriting of module m and connected closed call set S now com-
bines VRS(m) and C5(m).

Definition 6.15 (Module call rewriting).
For a module m and a connected closed call set S, we let the module call rewriting
T @5(m) be the following set of rules

TC5(m) = VRS(m)u CS(m) .

Next, we formally define the access set of a connected closed call set S.

Definition 6.16 (Access set of a connected closed call set).
Let P be an MLP, let m; be a module of P, and let S be a connected closed call set of P.
We define the access set of S with respect to m; as the set of modules

§) = my = (Pil], Ry) appears in P A my, & SA
acesp(S) =M |, S AR [pl.o(t) € ma(my) :
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Figure 6.2: Call Rewriting

Intuitively, the access set gives us all modules m;, without input parameters that
are not contained in S, such that m calls modules from S. Thus we may rewrite the
calls from my, to S using module call rewriting to access the shadow modules instead
of the modules of S.

Example 6.7 Let P be the MLP from[Example 6.5 The connection graph Cp = (V,E)
has the set of vertices V. = {m,, ms, ms} and the edges E = {(m3, m,), (ms, m,)}.
Thus, Cp consists of one connected component S’ = {m,, ms, ms}, which will be the
connected closed call set we use for the call rewriting. Then, we get that accsp(S") =
{m,, my}, as m,; calls both m, and ms, and m, calls m,.

We can now define the call rewriting with respect to a connected closed call set.

Definition 6.17 (Call rewriting).

Let P = (my,...,m,) be an MLP such that for a module m; = (P;[q;], R;) from P we
have |q;| < 1and S = {m;,...,m;, } is a connected closed call set with respect to m;.
We define the call rewriting of MLP P with respect to connected closed call set S as the
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MLP
CRP(S) = (mi, ces gy m;,l, m;l_}_l, cee g m;,l+h) Py

where for k € {1, ...,n},

(Pel], 7@5(my))  if my € accsp(S),

my otherwise,

!

mk=

andm/ , . = (Pn+j[],f(mij)) for j €{1,...,h}.

n+j

Intuitively, we leave modules m;, € S untouched, and clone them as shadow mod-
ules my, , ;, j € {1, ..., h}, by applying instance rewriting J° (mij) on them. Then, mod-
ules my, € accsp(S) will be rewritten to call the shadow modules instead of modules
from S.

To show the next lemma we define for each M}./T from M the set val(M;/T) con-
sisting of

c € CIPIA
val(M/T) = U valp(e,1,b) | p(c) € My /TA U (6.13)
m;; € S Pij[p].o(t) € ma(my) bS,:l(T) =b
c € ClPIA
U val,(c,0,b) | p(c) & My/TA (6.14)
m;; € S Pij[p].o(t) € ma(my) bSEl(T) =b
and flat(M}./T) be the set
flat(M/T) ={a(c,b) | a(c) € My /T A bsiN(T) = b} . (6.15)

For a module m;; € S from IRp(S) such that Pij[T] € VC(P) and a model M,,, ;/@
from M for the shadow module m;H_j of IRp(S), we let lift(M,,, j/@, T) be the set

lift(My1j/2.T) = {a(c) € HBp | a(c,b) € My j/@ AbS;(b) =T} . (616)

We can now show the following.

Lemma 6.4
The answer sets of the MLP IRp(S) correspond one-to-one to the answer sets of the
MLP CRp(S), that is,

« for each answer set M of IRp(S) there exists an answer set M’ for CRp(S) such
that
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M, /T = My /T for Pi[T] € VC(P) such that my & S U accsp(S);
M{j/T = lift(M,4.;/@, T) for all R, [T] € VC(P) such that m;; € S;

for each module m;; € S,

M, /@ = {bit(0), bir(}u | J (val(M;,/T) U flat(M; /T))
Pij[T]GVC(P)

- M} /@ = My/@ U val(M)/ @) for each module my. € accsp(S); and

« for each answer set M’ of CRp(S) there exists an answer set M of IRp(S) such
that

My /T = M} /T for Pi[T] € VC(P) such that my & S U accsp(S);

Mij/T = lift(M;H_j/Q, T) for all BJ. [T] € VC(P) such that m;; € S;

for each module m;; € S,

My /@ = {bit(0), bit(D}u | ) (val(M]/T) U flar(M; /T))
Pij[T]eVC(P)

My /@ = M /@ U val(M; /@) for each module my. € accsp(S).

ProoF In case accsp(S) = @, i.e., there are no modules outside S that call modules
from S, it follows that IRp(S) = CRp(S), thus our claim holds. For the case that accsp(S)
contains at least one module m; we show now that for each answer set of IRp(S) there
is a corresponding answer set of CRp(S), and vice versa. Intuitively, an answer set
of IRp(S) can be converted to an answer set of CRp(S) by exchanging the part of the
answer set that correspond to S with the part that correspond to the shadow modules.
The same holds when converting answer sets of CRp(S) to answer sets of IRp(S).

(=) Let M be an answer set of IRp(S). We show now that there exists an answer set
M’ of CRp(S) such that (a) M’ E f CRP(S)M’, and that (b) M’ is a minimal model of
f CRP(S)M’. Intuitively, M’ is the result of swapping the part of M for the shadow
modules with the part of M for the modules from S, while modules from accsp(S) get
additional atoms of form valy,(c, 1) (respectively, val,(c, 0)); modules that belong to
neither part are kept the same.

Let us start with In case module my & S U accsp(S) for value calls Pi[T] €
VC(P), we have that M /T = M} /T and m; = my, thus

f CRp(S)PITDM = f IRp(S)(P[TDM ,
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and since M satisfies fIRP(S)M, we get that M', Pi[T] F f CRP(S)(Pk[T])M/.

In case that a module m;; € S, it holds that M{j/T = lift(M,, /@, T) for all
Pij [T] € VC(P) such that m;; € S. As M is an answer set for IRp(S), we have that
M F fIRp(S)™, and in particular M, B, ;[@] F f IRp(S)(Byy j[@]M. We show now
that M’,BJ.[T] F fCRP(S)(Rj[T])M/ for all Pij[T] € VC(P) such that m;, € S. Let
r € fIRp(S)(B,4j[@DM, therefore M, B, j[@] F B(r) as well as M, B, ;[@] F r. We
distinguish the following cases:

o In case r is from ﬂ(mij), we have that r is of form qij(c, b) <« bit(b). Thus, for
T = bsij(b), we get qij(c) € lift(M,4 j/@,T) and so qij(c) € Mi'j/T, which is a
requirement for M’ being a model for f CRp(S )(Pij [THW.

« For the case that r is from B(mij), we have that r is of form (6.6). Thus, for
{bit(b)} C B(r) such that T = bsij(b), we show now that there is a rule r' €
grmd(R(my,) such that r = By, ('), and r' € f CRy(S)(®,[T)™ . The rule r’
must be of form (3.2), i.e., whenever there is an inflated atom a(c,b) € H(r) U
B(r), we have a(c) € H(r') U B(r'), and for module atoms B, ;.o(c,v) € B(r)
(respectively, Pr.o(c) € B(r)) we have the corresponding Py [p].o(c) € B(r")
(respectively, Pr.o(c) € B(r')). By construction ofMi’j/T = lift(M,4.j/@,T), we
can deduce that a(c) € Mi’j/T iff a(c,b) € M, /@ such that a(c) € HBp. Since
M, B, [@] F B(r), we get for ordinary atoms a(c) € B*(r’) that M’,Pij [T] E
a(c) (respectively, for ordinary atoms a(c) € B~ (r') that M', Pij[T] ¥ a(c)). For
module atoms @’ = Py.o(c) € BT(r') we get that M’,Pij [T] E a’ (respectively,
for a’ € B=(r'") that M',Pij[T] ¥ a'), as

Mie/(My /@)1 = Micl (M; /T = M /@

for any BJ.[T] € VC(P). Considering module atoms a’ = Py[p].o(c) € B(r'),
we get that a = B, x.0(c,v) € B(r) for the ground substitution ¢ mapping each
variable V¢ to v, from v for u € {1, ..., |6’|p||} such that

Ve, (a)o = {valy(e', Vi3 gy | € € € CBH(r) .

It holds that o(c,v) € Mn+k/(Mn+j/®)|? = M, /@ for an a € B*(r) (re-
spectively, o(c,v) & M, /@ for an a € B~(r)). Thus, for the module m;, € S
and for T' = bs; (v), we have that o(c) € Mi'k/T’ iff a € BT(r). Now as
M,B,, @] Fvforallv e V@mij(a’)a, we get that for p(c’,b) € M, ;/@ iff

v, = 1 for v, from v such that u = bpos(c’), and therefore, by construction of

153



Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

lift(Myj/@, T), we get p(c') € Mj /T iff v, = 1. Hence, g(c') € (M;j/T)|§1;<
iff v, = 1, which means that

(M /T = bs;, (v) =

Therefore, we can now link P [T]to B, [T'] in M, as it holds in case a’ € B*(r")
that M', P [ |Ea, andfora € B~ (r) we have that M, P [ 1 Ead'.

Therefore, M', B [T] F B(r'), and we get that ' € fCRP(S)(Pij[T])M'. By con-
struction of M" and as M, B, ;[@] F H(r), we have for a(c) € H(r’) such that
M, B, ;@] F a(e,b) that M',Pl-j[T] F a(c). Thus, M’,Pij[T] E H(r'), and so we
deduce M’,Pij [T]E 7.

Hence, M, [ 1Ef CRP(S)(P [TDM for all value calls Pl-j[T] such that m;; € S.

Next, we consider value calls B, j[@] for m;, € S. In this case, we have that
M, /@ = UP [Tleve val(Mij/T) Uﬂat(Mij/T). As M is an answer set for IRp(S),

we have that M & fIRp($)™, and in particular M, B [T] F f IRp(S)(B, [T for all

Pij[T] € VC(P) such that m;; € S. In CRp(S), we have m{j = my, and mnﬂ =

(Buyj[1, T (my))), just as in IRp(S). To show that M', By, j[@] F f CRe(S)(By. (@ o™,
we can reuse the argument from part (a) of the proof for which works
mutatis mutandis by considering M’ as defined here and showing that each part from

T (mi ) of f CRP(S)(P,,+ J[S])M/ is satisfied by M’ accordingly, that is, the part ﬂ(mij),
£ VR ™, and f B(mj,, ™

The last case considers the modules my, from accsp(S). Here, M} /@ = M /@ U
val(My /@), and CRp(S) defines m; = (Py[1, 7€5(my)). As M is an answer set for

IRp(S), we have that M E fIRP(S)M, and in particular M, Pi[@] E f IRp(S)(Pi[@])M
such that my, € accsp(S). We show now that M', Pi[@] E f CRP(S)(Pk[G])M’.

n+j

« the atoms from and satisfy f VRS : let ' € f VRS(my)™
thus M, P,[@] E B(r"). By construction of VRS(m), we get that r’ is of form
valy(c,1) < p(c) in case p(c) € M, /@, otherwise r’ is of form val,(c,0) «
p(c) for p(c) & M;/@. In the former case, we get from that valp(c,1) €
M, /@, while the latter allows us to conclude from that val,(c,0) € M} /2.
Therefore we can derive that M/, Pk[ | E H(r") and so we have that M’, P, [&] E

r’ for all rules 1’ € fVRS(mk)

. all f(:’S(mk)M are satisfied: let r' € f@S(mk)M , thus M', P, [@] E B(r'). We
show now that r € f IRp(S)(Px[@])M such that r' = G’%k(}’). Let a € B(r). As
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G’%k(a) = a for all ordinary atoms a or for module atoms a = P;[p].o(c) such
that m; & S, we get that M, Pi[@] F a iff M', P, [@] F a. For module atoms
a € B(r) such that a = Pij [p].o(c) with m;; € S, we have that @fnk(a) =a =
B4 j.0(c, v) for the ground substitution o mapping each variable V' to v, from v
for u € {1, ..., |C'P!|} such that VCp, (a)o = {valp(c', bcy;os(c’)) | ¢ € €|p|}o. As
M, Pi[@] E B(r"), we distinguish: (1) a’ € BT (r'), or (2) @’ € B=(r").

In case (), M, P, [@] F a’, hence o(c,v) € M,’H_j/@ such that T" = bsij(v).
We must have that o(c,v) € ﬂat(Mij/T’) by construction of M, j/®, hence
o(c) € Mij/T’. Since qij(c’) € T'iff v, = 1 such that u = bpos(c’), we

qi;
get by and that T" = (M/@)|p’, as whenever p(c') € M, /@ we
have valy(c¢’,1) € M, /@, and for p(c’) & M; /@ we have valy(c’,0) € M} /@,
thus encoding T’ by means of v. But since M},/@ C M; /@ and both differ only in

qi; qi;
atoms of form val,(c’, 037 and val,(c’, 0), we have that M /D) p’ = Mi/D)|p,
and thus T' = (Mk/®)|plj, whence we conclude that M, P,[@] E a.

In case (2), M', Pr[@] ¥ a’, hence o(c,v) ¢ M;q+j/® such that T’ = bsij(v).

We must have that o(c,v) ¢ ﬂat(Mij/T’) by construction of M, /@, hence
o(c) & Mij/T’. With a similar argument as in case (), we can deduce that

M, Pk[®] ¥ a.

Therefore, M, Py [@] E B(r), and so r € f IRp(S)(Pi[@])M. Now as M satisfies
M E fIRP(S)M, we must have that M, Pi[@] F H(r), and since H(r') = H(r),
we get M', Pi[@] F H(r") and thus M, P, [@] F r'. Therefore, we can deduce

that M', P [@] E £ CS(m)" .

We can derive now that for all value calls P, [T] € VC(CRp(S)) we have that
M/, Pi[T] E f CRp(S)M, therefore M’ E f CRp(S)™ .

We turn our attention to To show that M’ is a minimal model of f CRp(S)",
we must ensure that there is no interpretation M” such that M” < M’ and M" F

f CRo(S)™.

Towards a contradiction, assume M” satisfies f CRp(S)™ . As M” < M’, we con-

sider the following cases:

1. for some M}/T such that my & S U accsp(S) we have that M} /T C M, /T;

2. for some M;//@ such that my, € acesp(S) we have that M}/@ C M, /@;

3. for some M l’; /T such that for m;; € S and B,[T] € VC(P) we have that M 1'; /T C
M {j /T; or
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4. for some My, ;/@ such that m;; € S we have My, /@ C My, /.

Let N denote an interpretation for IRp(S) such that

« Ni/T = M{/T for all Px[T] € VC(P) such that my & S U accsp(S),

Ny /@ = M}/@ \ val(M}/@) for each module my € accsp(S),

Nij/T = lift(M;;H/@, T) for all Pij [T] € VC(P) such that m;; € S, and

for each module m;; €S,

Npyj/@ = (bit(0), bit(}u | ) val(M]/T) U flat(M}/T) . (617)
Pij[T]eVC(P)

If one of ()-(4) is true, we get that N < M. For case (I), we have for m; ¢
S U accsp(S), my, = my by definition of CRp(S) and M, /T = M /T. Thus, for P[T] €
VC(P) the reduct f IRp(S)(Px[T]DM is equal to f CRP(S)(Pk[T])M/. Since M}/T C
M, /T and M; /T = My /T, we get Ny/T C M/T. By assumption M” E f CRP(S)M/, we
have that M”, P[T] £ f CRp(S)™ for all P,[T] € VC(CRp(S)), and thus N, P;[T] F

f CRP(S)M’ for all Pi[T] € VC(IRp(S)). But this contradicts M being a minimal model
of f IRP(S)M, therefore N is not a model of f IRP(S)M and thus M” is not a model of

f CRo(S)™.
In case (2), M} /@ C M, /@, so we get that N./@ C My /@, as from our assumption

that M” is a model for f CRP(S)MI, we cannot have that atoms from val(M /@) are
missing from M} /@. Therefore, N < M and by minimality of M we have that N does

not satisfy f IRP(S)M. We must have arule r € f IRp(S)(Pj[@])M such that N, P[] ¥
r,ie, N,Pc[@] E B(r) but N, Pi[@] ¥ H(r). From r € fIRp(S)(P[@])M we can
deduce that there exists an r' € f CRP(S)(Pk[Q])M, such that r' = @‘qu(r) and by
definition of the FLP-reduct, M”, P;[@] F B(r’). But now we arrive at a contradiction,
as we must have that M", P, [@] ¥ H(r") and therefore M", P, [@] ¥ r’, which is

necessary to satisfy f CRP(S)M’.

For the case (3), M l’; /TCM i/j /T, we have that is true. The subset-relationship
N < M follows from M{;/T C Mi'j/T, where Mi'j/T is lift(Mp4j/@,T), and thus
Ny4j/@ C My j/@D. Therefore, N < M holds and by minimality of M we have that

N does not satisfy f IRP(S)M. We must have a rule ' € f IRp(S)(B, J-[Q])M such that

N, B, [@] ¥ r', that is N, B, ;[@] F B(r') but N does not satisfy H(r') at B, ;|@].

As r" appears in the shadow modules it must be from the set grnd(B,,, (r)), where
j

r e R(mij). Since ' € f IRp(S)(By4 ;[@]™, we must have M, B, ;[@] F B(r'), and

156



6.3.3. Module Removal of Connected Closed Call Sets

by construction of M’ and N, we must have M’,Pij[T] F B(r), where T = bsij(b)
for {bit(b)} C B(r'). Therefore, r € f CRP(S)(Pij[T])M/. AsN, B, [@] ¥ H(r'), no

a(c,b) € H(r') is true in N, and from the construction of N, we can conclude that
for all a(c) € H(r) we have a(c) & M{;/T. Hence, M”,Pij [T] ¥ H(r), so we get that

M”, Pl-j[T] ¥ r, which contradicts our assumption that M” satisfies f CRP(S)(B].[T])M/.
For the case (4), M;;ﬂ-/@ C M;H_J-/Q, we have that Nij/T = lift(M;;ﬂ-/@, T) for
all R, [T] € VC(P) such that m;; € S. For some particular Pij[T], we have that Nij/ T C

M i /T, which follows from the construction of M, + j/ @ from one of the M ij/ T. Now

we have that N < M by minimality of M we conclude that N does not satisfy f IRp(S)™.
Now we can apply the same line of reasoning as in case (3), this time only reversing
the role of the shadow modules and the modules from S. We then arrive at M” not
satisfying f CRp(S)(B, 4+ j[Q])M/, a contradiction.

(<) Let M’ be an answer set of CRp(S). We show now that there exists a corresponding
answer set M of IRp(S) such that (a) M F f IRP(S)M, and that (b) M is a minimal
model of f IRp(S)™. Intuitively, we convert the shadow part from M’ to the S-part of
interpretation M, and the S-part from M’ to the shadow part from M. The proof now
works, mutatis mutandis, as the proof for (=), hence both @ and @ are true, and M
is an answer set of IRp(S). O

6.3.3 Module Removal of Connected Closed Call Sets

We are now able to show that we can remove a connected closed call set from an MLP
P in order to obtain a rewritten MLP without input parameters.

We first define module removal, whose aim is to prune off modules from an MLP. In
later sections, we will employ module removal again for simplifying MLPs. We there-
fore define a general notion of module removal, and use it specifically for removing
connected closed call sets here.

Definition 6.18 (Module removal).
Let P = (my, ..., my) be an MLP, let m;. be a module from P, and let S = {m;,, ..., m;, }
be a set of modules from P. We define
P—my =(my, ..., My_1, Mi41,5 ..., My)
to be the reduced MLP P with respect to module m; and

P = (o ((P=my) = my) ) = m,

to be the reduced MLP P with respect to a set of modules S.
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@P (b) CRp(S) (c) CRp(S) — S

C my

Figure 6.3: Module Removal

Intuitively, removing modules from an MLP P might lead to a program that is not
well-formed, i.e., it could be that some modules in P — mj, or P — S depend on m;, or
on modules in S. But under certain conditions, we can prune superfluous modules of
S from an MLP and get an equivalent MLP with fewer modules.

One possibility is to prune the call rewriting CRp(S), where S is a connected closed
call set with respect to a module m; of the MLP P. Since S is a connected closed call
set, CRp(S) — S is guaranteed to have no dependencies from CRp(S) — S to any module
from S, which allows us to remove superfluous modules from the MLP CRp(S).

The next example illustrates module removal using the even module.

Example 6.8 Consider the MLP P = (m;, m,), where m; = (main[],R;) is a main
module with the set of rules R;

pa) <
p(b) <
r < P[p].even

and m, = (P[q/1],R,) is the module from [Example 3.1} Let S = {m,} be a connected
closed call set with respect to m;. shows the inter-module dependencies
of P.

Then, the call rewriting CRp(S) is given by the MLP (m;, m,, m5}), where m;] and
m;, are shown below. shows the shadow module m} and the disconnected
module m,. Applying module removal of CRp(S) with respect to S yields CRp(S)—S =
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(mj, m}) with the main module m; = (main[], R}), where R] is the set of rules
p(a) <
p(b) <

valp(a,1) < p(a)
valp(a,0) < not p(a)
val,(b, 1) < p(b)
valp(b, 0) < not p(b)

F < P'even(‘/l,la ‘/1,2)’ valp(aa I/l,l)a valp(b’ 1/1,2)
and the library module m, = (P[], R}), where R}, is the set of rules

bit(0) «
bit(1) «

q(a,1,B, 3) < bit(B, ), bit(B, 2)
q(b, By 1,1) < bit(B, 1), bit(B; 3)

q,(X’Bl,l’Bl,Z) vq'(y, Bl,laBl,Z) < qX, Bl,laBl,Z)a q(Y, 31,1531,2),X #Y,
bit(B, 1), bit(B; )

skip(X, By,1, By,2) < q(X, By 1, B12),notq'(X, By 1, By 1),
bit(B, 1), bit(B, )

valg(a,1, By 1, B1 ) < q'(a, By 1, By p), bit(By 1), bit(By 5)
valg(a,0, By 1, By 3) < notq'(a, By 1, By p), bit(By 1), bit(By 5)
valg(b,1,By 1, By 3) < q'(b, By 1, By ), bit(By 1), bit(B, »)
valg (b, 0, By 1, By ;) < notq'(b, By 1, By 2), bit(By 1), bit(By 5)

odd(By 1, By ) < skip(X, By 1, By 5), P.even(V 1, V1 2),
bit(By,1), bit(By ),
valg/(a, V1,1, By,1, By 2),
valq/(b, V1,2, B11, B1,2)

even(Bl,l, BI,Z) <« not Odd(Bl’l, BI,Z)’ bit(Bl’l), blt(Bl’z)
Note that CRp(S)—S consists of modules without input and preserves the call structure

of P, as shown in [Figure 6.3¢

In the following, we let P = (my, ..., m,,) be an MLP, m; = (P;[q;], R;) be a module
from P such that |q;] < 1,and S = {mil, . mih} is a connected closed call set with
respect to m;. We are now able to show the following.
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Proposition 6.5 (Module Removal)
The answer sets of the MLP P correspond one-to-one to the answer sets of the MLP
CRp(S) — S.

ProoF As Sisaconnected closed call set with respect to m;, the modules in S call either
modules in S or main modules from P that do not show up in S. Hence, CRp(S) — S
is a proper MLP, as the remaining modules in CRp(S) — S do not call any module in S
anymore.

What is left to be shown is that the reduced MLP CRp(S) — S has the same answer
sets as P. Let M be an answer set for P, and let M! be the answer set M’ for IRp(S)
that is obtained from the proof of Furthermore, let M€ be the answer set
M’ for CRp(S) that is obtained from using M’ as answer set of IRp(S) in the proof
of We obtain an interpretation M for the MLP CRp(S) — S from M® by
removing all M fj /T from M€ such that m;, € S and Pij[T] € VC(P). Since no module
from CRp(S) — S calls any module from S, we immediately get that M is an answer set
for CRp(S) — S.

Now let M be an answer set for CRp(S) — S. We receive an interpretation M for
P by first removing all Z\m/ @ from M such that m;; € S, and then adding for each

Pij [T] € VC(P) the set Mij/T = lift(l\m/Q, T) to M, where lift(-, ) is the function
defined in (6.16).

To see that M /i\s an answer set of P, we let/l\ic be an interpretation of CRp(S) that
is obtained from M by adding Micj/T = lift(M 4 j/@, T) for all m;; € S and Pij[T] S
VC(P). It is easy to see that for each Pl-j[T] € VC(P) such that m;, € S, each rule
ref CRP(S)(Pij [T])IVI has a corresponding rule r’ € f (CRp(S) — S)(Pn_,_j[@])Mc, thus
M€ must be an answer set of CRp(S). Now let M! be the answer set for IRp(S) that is ob-
tained from M€ in the proof of| Note that we have now all the original rules
r from my, € accsp(S) from the rewritten rules G;gnk(r) for the module m;, from CRp(S)
also satisfied in IRp(S). Now as P does not call modules m,,, ; from IRp(S), we imme-
diately get that M is also an answer set of P, since fP(Pij[T])M =f IRP(S)(PiJ.[T])Mi
for all Pij [T] € VC(P). O

6.4 Macro Expansion of Modular Logic Programs

In this section, we develop a macro expansion rewriting technique that does not impose
blowing up the arity of predicates. Here, we copy the rules from a particular module
into their calling module. Note that this approach to rewriting modular logic programs
is only applicable to modules whose rules are Horn, and whose call graph is acyclic.
In the following we will then show how this technique can be applied to dl-
programs (Eiter et al.,2008).
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6.4.1 Module Copy Rewriting

Module copy rewriting is split into two parts, one for the module callee and one for
the module caller. The first one takes a module that is being called by another one and
rewrites its atoms by attaching the associated module call to its predicates, as well as
adding new rules that deal with module input. The second part of the translation takes
care of the caller module by replacing the module call by the fresh predicate created in
the first part of the translation. Adding the callee translation to the module caller then
gives us a new module that has one module call less and the rules of the called module
added to the caller module. When applying this method to all the module calls, we can
remove module atoms, thus creating an MLP with one or more disconnected library
modules, which in a subsequent step can be safely removed.
We begin with the definitions for rewriting module callees.

Definition 6.19 (Module callee input).
Let m = (Q[q], R) be a module and p be a predicate symbol matching the arity of q.
We define the module callee input rule as

€JI(m,Q[p]) = ¢?PI(X) < p(X)

The rules of a called module are rewritten based on the following translation.

Definition 6.20 (Module callee rewriting).
Let m = (Q[q], R) be a module and let p be a predicate symbol matching the arity of q.
For an atom a appearing in m, we define

_ bRIPI(t) if a is of form b(t)

¢7(a,Qlp)D) = P;[b?P!.o(t) if ais of form Pj[bl.o(t)

Given a rule r of form (3.2), we can now define €7 (r, Q[ p]) to be the rule

CT (ay, QIpD V -+ v €T (ay, QLpD) < €T (B1, QIPD; .., €T (B, QLPD,
not €T (By+1, QP ..., not CT(By,, QlpD) -

For the set of rules R in m, we let
CTR,Q[pD) ={CT(r,Q[p]D | r €R} .

The next part of the translation takes a calling module and a called module, and
rewrites the module atom of the called module. A module m; calls a module m; if
there is a rule in R(m; ) that has a module atom of form P;[ p].o(t) in its body.

161



Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

Definition 6.21 (Module caller rewriting).
Given two modules my, = (Py[qk], Rx) and m; = (P;[g;], R;) such that my, calls m;, we

define

oFilPI(t) if a is of form P;[p].o(t)
exaplp) =) P

b

otherwise

and for a rule r of form (3.2), we define CM(r, P;[ p]) to be the rule

ay Ve Vag < CM(By, Pilpl), ..., CM(By, Pil P,
not eM(ﬁm+17Pi[p])’ ..., not GM(BH’Pl[p]) .

For a set of rules R and the module atom P;[ p], we let

CM(R, Pi[p]) = {€M(r,Pi[p]) | r €R} .

Given my, and m; as in [Definition 6.21) we can now incorporate m; into my such
that my. does not call m; anymore. We therefore formally define:

Definition 6.22 (Module copy rewriting).
The module copy rewriting of the MLP P with respect to the modules my, and m; and
module atom P;[ p].o(t) is the MLP

MCR(P, my, my, Pi[p]) = (my, ..., My_q, My, My 1, ..., My,)
where
my = (Plqxl, CM(R(my), Pi[p]) U CT (R(my), Pi[p]) U CI(m;, Pi[p]))

Example 6.9 Let P = (mg, my, m,, m3) be an MLP with the main module m, =
(Pol], Ry), and the three library modules m; = (P;[q;],R;), m, = (P3[q,],R,), and
ms; = (P5[gs], R3). The rules of P are as follows:

a «
Ry = z ¢ < P,[a].oy, Py[b].0, K
d <—P1[b].01

I

{ 01 «— noth[ql].Oz }
0, < P3[q;].05

R, ={ 0, « P3[q,].05 }

R; = { 03 < (3 }
For the modules m, and m3 of the MLP P, the module copy rewriting is given by

MCR(P, m,, m3, P3[q,]) = (mg, my, mjy, m3) ,
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Figure 6.4: Directed connection graph MCp

where m) = (P,[q,], R;) such that R} is
CImy, Pilg): g3 g,
CM(R(my), P3[q.]): 0 “« 053[%]
CT (R(my), P3[q;]): 053[‘12] - q§3[QZ]

In order to capture module dependencies for the rewriting, we define the following
dependency graph.

Definition 6.23 (Directed connection graph).

The directed connection graph of the MLP P is the directed labeled graph MCp = (V, E)
with vertex set V. = {my, ..., m,} consisting of all modules of P and edge set E =
{(my, my, p) | (my, my) € V XV and Py[p].o(t) € ma(my)}.

That is, a labeled edge (m;, my, p) appears in MCp from m; to my, capturing the de-
pendency from the callee module m; to the caller module m for every module input
predicate p of a module atom P;[p].o(t) in my. Note that the labels p allow to have
multiple edges from m; to my.

Example 6.10 (cont’d) The directed connection graph MCp for the MLP P from
is shown in

For a set of ground atoms M and module tag Q[ p], we define the functions

tag(M, Q[p]) = {a?Pl(c) | a(c) € M} ,
untag(M, Q[p]) = {a(c) | a?P!(c) € M} , and
notag(M, Q[p]) = M \ {a?P)(c) € M}

to show the following.
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Lemma 6.6
Let P = (my, ..., m,) be an MLP such that for the modules m;, and m; from P

« the module atom P;[p].o(t) appears in my,
« m; is a Horn module, and

« no strongly connected component of MCp contains both m; and m;.
Then,

« for an answer set M of P there exists an answer set M’ of the module copy rewrit-
ing MCR(P, my,, m;, P;[ p]) such that for all P;[T] € VC(P) with S = (Mj/T)|qpi,

M, /T U tag(M;/S,P;[p]) ifj =Kk,

' (6.18)
M j/ T otherwise;

M}-/T = {

« for an answer set M’ of MCR(P, my,, m;, P;[ p]) there exists an answer set M of
the MLP P such that for all P;[T] € VC(P),

M./T = {notag(Mj/T,Pi[p]) if j =k, (6.19)

M]’ /T otherwise.

ProorF Intuitively, the answer sets of P and MCR(P, m;, m;, P;[p]) correspond one-
to-one to each other. An answer set M of P can be mapped to an answer set of
MCR(P, my, m;, P;[ p]) by copying the model M;/S and tagging the atoms with a mod-
ule atom label to M} /T for value calls P;[S] that get called from P [T]. In the other
direction, we can remove those additional atoms from M} /T.

(=) Let M be an answer set of P. We show now that M'—constructed from M as
defined above—is an answer set of the MLP MCR(P, my, m;, P;[ p]), i.e., we show that

(a) M' E f MCR(P, my,, m;, P;| p]) , and that (b) M’ is a minimal model of the reduct
fMCR(P’ my, mi’Pi[p])M

We show [item ajnow. We immediately get that M’, P;[T| F f MCR(P, my, m;, P;| p])Ml
for j # k, as

f MCR(P, ., m;, Pi[ p])(P; [T])M’ fe@; I
in this case. From the definition of module copy rewriting, we can see that
CM(f P(PL[TDM, Pi[p]) U €T (f P(PL[TDM, Pyl p])
C f MCR(®, my., my, Py pD)(Pi[TDV
C CM(f P(P[TD, Pi[pD) U €T (f P(PL[TDM, Pi[p]) U grnd(CI(m;, Pi[p]))
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All rules of CT(f P(Px[T]M, P;[p]) are satisfied, as we have that tag(M;/S, P;[p]) is
contained in M; /T. Furthermore, grnd(CJ(m;, P;[ p])) is satisfied by M, /T, as for M;/S
such that S = (M,/ T)|%i, we have that S C M;/S by definition of an interpretation for
an MLP P, hence all rules

g:"P)(c) < p(c) € grmd(CI(my, Pi[p]))

such that p(c) € My /T are true in M} /T. Thus, all rules of CM(f P(Pc[T])™, P;[p])
without a module atom P;[p].o(c) in their bodies are satisfied, as M; /T contains all
atoms from M,,/T, which is a model of f P(Pi[T])M. Now let r € fP(P[T]M such
that there is a module atom a = P;[p].o(c) € B(r). Then, there is the corresponding
rule ' € CM(f P(P[TDM, P;[ p]) such that oFilPl(c) € B(r'). For M, P¢[T] F a we
must have that M, P;[S] E o(c) for S = (Mk/T)|%i, and for M, Pi[T] ¥ a we get
M, P;[S] ¥ o(c). Hence, o(c) € M;/S (respectively, o(c) & M;/S) and so we have
that ofilPl(¢) e M 1/T (respectively, of ilPl(c) ¢ M i/T), which proves that M’ satisfies
B(r'). As H(r) = H(r"), we also have that M’ satisfies H(r"), since M is a model of r.
Hence, M’ E f MCR(P, my., m;, Pi[p])™ .

We continue with fitem bl To show that M’ is a minimal model of

M/

f MCR(P, my,, m, Pi[p)™

we must ensure that there is no smaller interpretation M” < M’ such that M” is a
model of f MCR(P, my, m;, Pi[p])™ .

Towards a contradiction, assume M” E f MCR(P, m, mi,Pi[p])M,. AsM" < M/,
we consider the following cases:

1. for some M}'/U such that j # k and j # i, we have M}-’/U C M}/U;
2. for some My /T we have M}/T C M} /T; and
3. for some M;'/S we have M| /S C M]/S.
Let N denote an interpretation for P such that
« N;/U = Mj/U for all P;[U] € VC(P) such that j & {i, k},
« Ni/T = notag(M}/T, P;[ p]) for each Py[T] € VC(P),

for each value call P, [T] € VC(P) such that S” = (M,'{'/T)|%", we set N;/S" =
untag(My /T, P p]), and

for all P;[S] € VC(P) such that S # S” for any S” from above, we set N;/S =
M'/S.
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If one of (I)-(3) is true, then N < M. In case (1) and (3), we have that
FR(P;UDM = f MCR(P, mye, my, Pi[pD(P; UM

and
FP@SIM = f MCR(P, my, m;, P, p)(P;[SDV

respectively. As M is an answer set of P, we get that N, P;[U] ¥ fP(P j[U])M in
case (1), and N, P;[S] & f P(P;[S])M in case (3). Therefore, in either case, we get

M",P;[U] ¥ f MCR(P, my., my, Pi[ p)(P;[UD™

and
M", P;[S] ¥ f MCR(P, my, m;, P,[ pDPi[SDV

respectively, which contradicts M” being a model for f MCR(P, m,., m;, P;[ p])M’

In case , there must exist an atoma € M ,’c/ T such thata &€ M ,’é /T. We distinguish
the following cases: (i) a is of form afilPl(c), or (ii) a is from notag(M, /T, P;[ p]).

In the case (i), a must be from tag(M;/S, P;j[p]), where S = (Mk/T)|%i. Hence,
for a(c) € M;/S, we have that a(c) ¢ N;/S” for §" = (M,’{'/T)|%i. Since m; is
Horn and by assumption that both M and N are models of fP(P;[S”])™, we must
have that M N N, P;[S”] E fP(P;[S"DM. As N;/S”" C M;/S”, we must have that
M NN < M, but since M is a minimal model which must be unique on the Horn

module m;, we arrive at a contradiction that N is a model of fP(P;[S"])M. Since
FPEP;[S"IM = f MCR(P, my,, m;, P;[ p])(P;[S "])Ml we also get that M” does not sat-
isfty f MCR(P, my, m;, P;[ p])(P; [S"DM', hence M” ¥ f MCR(P, my,, m;, P; [p])M’ and
we must have that M’ is a minimal model for f MCR(P, my, m;, P;| p])M/

In case (i), where a € notag(M; /T, P;[p]), we have that a € M}/T, hence a ¢
N/T. As Ni/T C M, /T, by minimality of M we can infer that there is a rule r €
fP(Pi[TDM such that N, P [T] ¥ r, therefore both N, Pi[T] E B(r) and N, P[T] ¥
H(r) hold. For the rule r' = CM(r, P;[ p]) both ordinary and module literals in B(r")
are satisfied by M’, as well as literals of form ofilPl(¢) = eM(P;[p].o(c), P;[p]) (re-
spectively, not ofilPl(¢c)). Thus, o(c) € M;/S (respectively, o(c) & M;/S), so we have
that ofilPl(¢) € tag(M;/S,P;[p]) (respectively, ofilPl(c) & tag(M;/S,P;[p])), and
therefore we conclude that M, Pi[T] E B(r"), which means that

r' € f MCRP, my, my;, Pi[p])(Pe [TV .

Hence we get M", P [T] ¥ r' as H(r) = H(r') and M", P;[T] ¥ H(r'); therefore we
have a contradiction for M” being a model for f MCR(P, my., m;, P; [pD™.
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(<) Let M’ be an answer set of MCR(P, my., m;, P;| p]). We show now that there exists
an answer set M of P that can be constructed from M/, i.e., we show that (a) M E f PM,
and that (b) M is a minimal model of f PM,

Let us consider We immediately get that M, P;[T] F f PM for j # k, as

fPP;[TDM = f MCR(P, my, my, Py p])(P;[TH™

in this case. Otherwise, from the definition of module copy rewriting, we can see that
if r € fP(P[T]M, then there exists the rule r' € f MCR(P, my,, m;, P;[ p])(Px[T W
such that ' = CM(r, P;[p]). For those rules, we have M’, P, [T| F B(r"). Ordinary
literals are satisfied in B(r) as well; it remains to show that literals with module atoms
of form P;[p].o(c) € B(r) are also satisfied by M. This follows from m; being Horn,
since for a rewritten atom o%ilPl(¢) = €M (P;[p].o(c), P;i[p]) € M, /T there must be
a rule # € f MCR(P, my, m;, P;[ p])(Px|T TDM' such that H(?) = ofilPl(c). As m; is
Horn, it has a unique model on the value calls for m;, thus there must exist a rule 7 €
f MCR(P, my, m;, P;[p])(P;[S ])M’ with S = (M,’{/T)|qi such that H(7) = o(¢) and 7 =
CT (7, P;[p]). Now as M’, P;[S] E B(7) and since f MCR(P, my., m;, P;[ p])(P;[S SPM =
fP(P;[SDM, we have 7 € fP(P;[SIM, and since M;/S = M]/S we also have H(F) =
o(c) € M;/S, thus M, P;[S] E H(7). Now we can conclude that M, Py [T] E P;[ p].o(c),
and so we get that all literals from B(r) are satisfied by M, and since H(r) = H(r'),
we have M, Pi[T] E H(r) from M', Pi[T] E r'. Therefore, M, P;[T] E r and thus
M, P, [T] E fPM.

Now, we have that all value calls from f PM are satisfied by M, hence M is a model
for f PM.

Next, we consider To show that M is a minimal model of f PM, we must ensure
that there is no interpretation N such that N < M and N k f PM,

Towards a contradiction, assume N satisfies f PM. As N < M, we consider the
following cases:

1. for some Nj/U such that j # k, we have Nj/U C Mj/U; and
2. for some Ni/T we have N./T C M,/T.
Let M” denote an interpretation for MCR(P, my, m;, P;[ p]) such that
« M;/U = N;/U for all P;[U] € VC(P) such that j # k,

« M}}/T = Ni/T U tag(N;/S, P;[p]) such that S = (N/T)|§ for each P[T] €
VC(P),
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If one of (1) or (2) is true, then M” < M. In case (1), we have that
f MCR(P, my, my, Pi[pD(P;[UD™ = f P(P;[UDM .
As M’ is an answer set of MCR(P, my, m;, P;[ p]), we get that
M",P;[U] ¥ f MCR(P, my, m;, Pi[p)(P;[UD™" .

Therefore we get N, P;[U]| ¥ fP(P j[U])N, which contradicts N being a model for
fPM,

In case (2)), there must exist an atom a € M/T such that a € N/T. Thus, by minimal-
ity ofM we get that M” ¥ f MCR(P, my, ml, ApDPrIT ])M and as a must be from
notag(M; /T, P;[p]), there must be arule r’ € f MCR(P, my, m;, P;[ p])(Py[T TDM' such
that M”, P, [T] E B(r') but M", P, [T] ¥ H(r"). So we get that for the rule r’ both lit-
erals from my, as well as literals of form ofilPl(¢) = eM(P;[p].o(c), P;[ p]) are satisfied
in the body of ¥’ by M'. Now let r be a rule from P such that ' = CM(r, P;[ p]). Since
M",P[T] E oFilPl (respectively, M", P, [T] ¥ oFilPl), we get that also M, Pi[T] E
P;[pl.o(c) (respectively, M, Pi[T] ¥ P;[pl.o(c)). Thus, r € fP(P[T]M. Now we
have that N, P [T] E B(r), and since H(r) = H(r"), we conclude N, Py [T] ¥ r. There-
fore, we arrive at a contradiction to our assumption N F f PM and M must be a mini-
mal model for f PM. O

In the following, we consider sets of modules that can be rewritten using module
copy rewriting. We start with defining the topological sort of a subgraph of MCyp.

Definition 6.24 (Topological sort).

The topological sort of MCp = (V, E) with respect to a set S of modules of P is a linear
ordering < C S X S of vertices S C V such that for all m;, m; € S, m; < m;, whenever
my, is reachable from m; in MCyp.

Example 6.11 (cont’d) Continuing with[Example 6.9 let S = {m,, m,, ms} be a set of
modules from P and MCp the directed connection graph of P as shown in [Figure 6.4}
There exists only one topological sort < of MCp with respect to S: {(ms, m;), (ms, m,),
(my, my)}, viz., my < my < m;.

We now define rewriting sequences, which are used to fix a sequence of rewriting
steps for the MLP P. Such sequences do not guarantee that we end up in a “rewrit-
ing fix point,” but for certain sequences—called admissible—we can guarantee that the
outcome of the applied rewriting steps end up in an MLP that has a disconnected part
ready to be removed from that program.
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Definition 6.25 (Rewriting sequence).
A module call rewriting step o = (s, t, p) for MLP P is the rewriting function

U(P) = MCR(P’ mg, ms’Ps[p]) ’

where s,t € {1, ..., n} and p is a predicate symbol. A rewriting sequence 6 is a sequence
of module call rewriting steps oy -+ 0,_10, such that 6(P) = o,(c,_1(:-- o1(P))).

Example 6.12 (cont’d) The rewriting steps o; = (m3, my,q;) and o, = (M3, My, q5)
and o3 = (m,, my,q,) are the rewriting functions o,(P) = MCR(P, my, ms, P3[q,]),
0,(P) = MCR(P, m,, m3, P3[q,]), and o3(P) = MCR(P, m;, m,, P,[q,]), respectively.
Put together, there are several possible rewriting sequences §; ; i of the form 00 oy,
for i, j,k € {1, 2, 3}, as well as sub-sequences thereof.

Based on a topological sort < of MCp with respect to a set of modules S, we define
admissible rewriting sequences next.

Definition 6.26 (Admissible rewriting sequence).

Let S be a set of modules from the MLP P and < be a topological sort of MCp = (V, E)
with respect to S. A rewriting sequence 6 = o --- 0, of P is called admissible with
respect to S, if the following conditions hold:

1. for each o; = (s,¢t, p) of 6, both mg and m; are from S,

2. if m; < mj and m; < my such that for all pairs o4 = (i, j, Pa), 0p = (J, k, pp) in
6, then o, appears before o}, in 6,

3. for (m;, my, p) € E such that m;, m;. € S implies there exists a 0; = (i, k, p) in
0, and

4. for each g; = (53, t;, p;) from 6, the module mg, is a Horn module.

Example 6.13 (cont’d) Let S = {m;, m,, ms} be a set of modules such that m; <
m, < m, is a topological sort of MCp for the MLP P from [Example 6.9] Then, there
are three admissible rewriting sequences 0,0,03, 0,0,03, and 0,030; with respect to

S, as defined in[Example 6.12]

Intuitively, (1) requires that all rewriting steps must work on the set of fixed mod-
ules S. Condition (2)) ensures that the rewriting sequence 0 respects the topological
sort < of P. Condition (3) requires that all modules in S will be completely rewritten;
both (2) and (3) then guarantee that in a particular module no call is left before the next
module is rewritten. The last condition (4) makes sure that all modules except the root
module are Horn, i.e., for the rewriting step o, = (s, ts, p¢), the module m;, of P is
not required to be a Horn module. This allows to rewrite a sub-dag of the transposed
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graph of MGy (i.e., every edge has reverse orientation) rooted in a generic module,
where every leaf and every inner node consists of Horn modules to be rewritten until
we reach the root module.

Following an admissible rewriting sequence 6 with respect to a set of modules S,
we can rewrite P such that we create an MLP 6(P) with a separated part S.

Proposition 6.7 (Module separation)

Let P = (my,...,m,) be an MLP, let S be a set of modules from P and let 6 = g, --- g,
be an admissible rewriting sequence of P with respect to S. Then, the answer sets of P
correspond one-to-one to the answer sets of 6(P).

PrROOF We proceed by induction on h for 1 < h < € such that 8" = o, --- 0, In the
base case, we set h = 1 and have 6! = g, to be an admissible rewriting sequence with
respect to S. Then, for a pair m;, m; € S such that m; < my, we have o; = (i, k, p).
Hence, 0,(P) = MCR(P, my,, m;, P;| p]), and by we get that the answer sets
of P and 6'(P) correspond.

In the inductive step, we let h > 1 and assume that our proposition holds for
all j < h. We prove that if the answer sets of P and 8/(P) for all admissible rewriting
sequences 8/ =g, -0 jfor j < hcoincide, then the answer sets of P are in one-to-one
correspondence to 8/+1(P) for the admissible rewriting sequence 8/*! = g, --- o 041
Now, let g1 = (i,r, p) for a pair m;, m, € S such that m; < m,. As 03-+1(9j(P)) =
MCR(67(P), m,, m;, P;[ p]), we get bythat the answer sets of /11(P) match
the ones of 8/(P), and by our assumption that 8/(P) and P have corresponding answer
sets, we get that the answer sets of 8/+1(P) and P coincide. O

In general, module copy rewriting requires the addition of exponentially many
rule copies in order to exhaustively rewrite an MLP. This can be seen as follows: only
acyclic parts of the MLP can be rewritten, but we need to clone the rules of modules
along all possible paths in the directed connection graph; in the worst case, we may
have exponentially many paths. Take, as an example, a stack of diamond-shaped MLPs
similar to the one of [Example 6.9}-i.e., when a top-most module of a lower diamond
becomes the sink of an upper diamond—, we would need to copy the sink module into
more than one module along the edges of MCp in direction to the main module. When
an anchor point module sharing two diamonds in the stack then joins its callee mod-
ules, it needs to copy also the two clones of the sink module. Continuing upwards
towards the top-module of two diamond subgraphs, we end up in four clones of the
sink module. Note that n module calls from one module to another module also re-
quires to replicate the callee module n times. If the number of paths in the directed
connection graph of an MLP is bounded by a polynomial, or the length of the paths is
polynomially bounded, then module copy rewriting increases the size of the MLP only
by polynomially many module clones. For instance, when the directed connection
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graph of an MLP forms a binary tree, we can rewrite leaf modules to their successor
modules and when we arrive at the top-most root module, we will have collected only
one copy for each preceding module in the root module.

6.4.2 Module Removal of Separated Modules

Once we have (exhaustively) applied module copy rewriting on an MLP, we potentially
end up with a rewritten MLP that has all source modules being separated from the
target part of the MLP. That is, the part of the rewritten MLP that contains the last
target module m;, in the last rewriting step o, = (s, t,, p,) of an admissible rewriting
sequence 6 = 0, -+ 0, is disconnected from all modules mg, to my,. All those my,
serve no purpose anymore when no other module is calling them, as the rewritten m;,
would then contain all the rule copies from my, up to my,.

By inspecting the connected components of the underlying graph of the directed
connection graph MCq(py—i.e., the undirected variant of MCgp)—, we can remove
those modules of 6(P) that appear in singleton connected components. This means
we can prune a module m; whenever its connected component is {m;} in the underly-
ing graph of MCyp).

We now formally define the basic concepts for removing separated modules from
a rewritten MLP O(P). The underlying graph of an directed graph G is the graph UG
obtained by replacing each directed edge of G by a corresponding undirected edge.
Let S be a set of modules from an MLP P and let 6 be an admissible rewriting sequence
of P with respect to S. Let UMCgy(py be the underlying graph of MCq(py = (V, E) for
the MLP 6(P). A module m from 8(P) is called free to prune if the singleton set {m} is
a connected component of UMCy(py and the MLP P,,, = (m) has at least one minimal
model, i.e., MM (P,,,) # @. The set of modules P C S is called a pruning set with respect
to O if for a rewriting step o = (s, t, p) from 6, every module mg € P is free to prune,
and no module m’ € S is free to prune such that m’ ¢ P.

We can now show the following.

Lemma 6.8

Let P = (my, ..., m,) be an MLP, let S be a set of free to prune modules from P. Then, if
M is an answer set of P there exists an answer set M’ of P — S such that M}/T = M;/T
for each mj & S.

Proor We show now that M’ is an answer set of P— S, i.e., we show that both (a) M" E
f@®P- S)M’, and that (b) M’ is a minimal model of f (P — S)M,.

We commence With As M is an answer set of P, it satisfies M, P;[T] E f PM for
each P,[T] € VC(P). Thus, M, P,[T] E f (P — ).

Next, infitem b] since all m; € S are free to prune, there are no calls of form P;[ p].o(c) in
the rules from m; of P — S. This follows from {m;} being a connected component from
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UMCp. Furthermore, m; must have a minimal model, and M captures one of them
with the interpretation (M;/T | P;[T] € VC(P)) for m;. Towards a contradiction,

assume that there exists an interpretation M” < M’ such that M" F f(P — S)M,
Now let N be an interpretation for P such that N;/T = M;/T for each m; € S and
M;/T = M}’/T for each m; & S. It is clear that N < M, and since M is a minimal

model of fPM, there must be a rule r from some module m j & S such that for the
value call P;[T], N,P;[T] ¥ r. The same rule r must exist in f (P — S)(Pj[T])M’.
Hence, M",P;[T] ¥ r in P — S, and thus M", P;[T] ¥ f(P — S)(Pj[T])M,, which
contradicts our assumption that M" F f (P — S )M/. We can now conclude that M’ is a

minimal model of f (P — S )Ml. O

Lemma 6.9
Let P = (my, ..., m,) be an MLP such that for the modules m; and m; from P

« the module atom P;[ p].o(t) appears in my,

« m; is a Horn module, and

» UMCicr(p,my.,m;,p;[p) has the connected component {m;}.
Then,

1. for an answer set M of MCR(P, m;, m;, P;[ p]) there exists an answer set M’ of
the MLP MCR(P, my, m;, P;[ p]) — {m;} such that for all P;[T] € VC(P), j # i,

M}/T = Mj/T ; (6.20)

2. for an answer set M" of MCR(P, my., m;, P;[ p]) — {m;} there exists an answer set
M of the MLP MCR(P, my., m;, P;[ p]) such that for all P;[T] € VC(P),

untag(M,./S,P;[p]) if j=iand T = (M;/S)|},

M;/T =
J M 3 /T otherwise.

(6.21)

ProoF Note thatfitem I/follows from[Lemma 6.8] since m; is free to prune in module call
rewriting P’ = MCR(P, my,, m;, P;[ p]), as m; is a Horn module and m; is disconnected
inP’.

What remains to show is As M’ is equal to M on the part without value calls
P;[T], what need to show that M" = (M;/T | P;[T] € VC(P)) is a minimal model for
the MLP (m;), since m; is disconnected in MCR(P, my, m;, P;[ p]) and therefore m; does
not call other modules. Hence, the rules in module m;, from MCR(P, my,, m;, P;[ p]) that
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correspond to m; do neither call other modules. Therefore, as m; is Horn, the rules in

the reduct f (m)™" correspond one-to-one to the rules in the reduct
f (MCR(P, my., m;, Pi[ p]) — {mD(P[SDV
ie,r e f(m)@THM" if and only if
CT(r, Pi[p]) € f (MCR(P, my, my, Py[ p]) — {m)(Pi[SDM .

As M’ is a model for the MLP f MCR(P, my, m;, P;[ p]) — {m;}(Py[S SPHY', we get

that M" is a model for f (ml) . We show now that M" is minimal. Towards a con-
tradiction, assume that N” is an interpretation of (11;) such that N* < M". Let M” be
an interpretation for the MLP MCR(P, my, m;, P;[p]) — {m;} such that M;/T = M; /T

for all j # k, and M}/T = notag(M,/T,P;[p]) U Nlh/S such that S = (Mk/T)| )
Therefore, M" < M’ and thus M", Pi[T] ¥ f MCR(P, my, m;, P;[p]) — {m:}"* . There
must be a rule 7’ contained in the MLP f MCR(P, my, m;, P;[ p]) — {ml}(Pk[T])M such
that M", P, [T] ¥ r'. Since M” differs from M’ in the atoms that correspond to m;,
we get that r'" = CJ(r,P;[p]) for a rule r from m;. Now as the rules in the reduct

f(ml) and the rules in the reduct f MCR(P, my, m;, P;[ p]) — {ml}(Pk[ TDM corre-
sponding to m; match each other using CJ (-, ), we have that N”, P;[S] ¥ r’, and

h
hence N" is not a model for f (mi)M , which contradicts our assumption. Hence, Mmh

h
is a minimal model of f (m;)™ . Since m; is Horn, we get that M is an answer set of
MLP MCR(P, my, m;, P;[p]). O

Rewriting a set of modules requires to ensure that all calls from a calling module to
another callee module will be completely rewritten, before we can apply macro rewrit-
ing to the next module. To this end, we refine the definition for admissible rewriting
sequences and define module-oriented rewriting sequences next.

Definition 6.27 (Module-oriented rewriting sequence).

Let 6 = o0y -+ 0, be an admissible rewriting sequence for MLP P with respect to a set
of modules S, then 0 is called a module-oriented rewriting sequence with respect to S, if
for all subsequences g -+- 0 -+- 0y of @ such that i < j < k and 0, = (s, 4, p4) for
* € {i, j, k}, if s; = 5 then the following two hold:

1. Sizsj/\tiztjztk
2. Si$éSj—>ti;étk

Intuitively, module-oriented rewriting sequences enforce that all calls from a par-
ticular module to another module will be rewritten using a continuous sequence of
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rewriting steps. Condition (1) is a safeguard that there is no intermediate rewriting
step 0; that copies a module my; different from myg, into module m;, before all calls
from my, to mg, have been rewritten. The second condition (2) guarantees that when-
ever there are two different modules m;; and my; that get called by m,, and m,,, then
m;, and m;, must be different.

For the following results, let P = (m,, ..., m,) be an MLP, let S be a set of modules
from P, let & = o} --- 0, be a module-oriented rewriting sequence of P with respect
to S, and let P be a pruning set with respect to 6. Note that module-oriented rewriting
sequences rewrite Horn modules, thus even though 8(P) and 6(P) — P do not share
modules from P, this does not create additional answer sets.

Proposition 6.10 (Module pruning)
The answer sets of 8(P) correspond one-to-one to the answer sets of 6(P) — P.

ProorF We proceed by induction on h for 1 < h < € such that 6" = g --- g},. In the
base case, we set 1 = 1 and have 6! = o, to be a module-oriented rewriting sequence
with respect to S. Then, for a pair m;, mj. € S such that m; < my, we have oy = (i, k, p)
and P! = {m;}. Hence, o,(P) = MCR(P, my,, m;, P;[p]), and by we get that
the answer sets of 8!(P) and 8'(P) — P! correspond.

In the inductive step, we let 1 > 1 and assume that our proposition holds for all
j < h. We prove that if the answer sets of 8/(P) and 87 (P)— P/ coincide for all module-
oriented rewriting sequences 6/ = g -+ oj for j < h such that P/ = {mg,, ..., msj}
is a pruning set with respect to 6/, then the answer sets of 8/71(P) are in one-to-
one correspondence to 8/%1(P) — PJ*! for the module-oriented rewriting sequence
i+l =g, - 0j0j41 and the pruning set PItl =piy {mSjH}. Now, let gj; = (i,r, p)
for a pair m;, m, € S such that m; < m,.. As 03+1(9j(P)) = MCR(6/(P), m,, m;, P;[ p]),
we get by that the answer sets of 6/+1(P) match the ones of 8/(P), and by
our assumption that 6/(P) and 6/(P) — PJ have corresponding answer sets, we get that
the answer sets of 8/%1(P) and 8/+1(P) — P/*! coincide. O

The next result then immediately follows from|Proposition 6.7/and[Proposition 6.10}

Corollary 6.11 (Separated module removal)
There exists a one-to-one correspondence between the set of answer sets of P and the
set of answer sets of O(P) — P.

6.5 Application: Description Logic Programs
In this section, we will show how to use MLP macro expansion from as an appli-

cation to implement dl-programs (Eiter et al., [2008), which is a prominent formalism
for representing hybrid knowledge bases based on Description Logics (DLs) and logic
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programs. To this end, we first show how to translate dl-programs based on the class of
Datalog-rewritable Description Logics into MLPs. Datalog-rewritable DLs have been
studied intensively over the last years as an efficient means to implement DL reasoning
by translating ontologies and queries into Datalog programs. This class of DLs com-
prises of DLs such as £LDL* (Heymans et al., 2010), Horn-SFJQ (Eiter et al., 2012c),
RL (Krotzsch et al., 2013), SROEL(M, X) (Krotzsch,|2011), and more (see also (Krotzsch
et al., 2015; Xiao, 2013) for an overview on Datalog-rewritable DLs). Several studies
on ontology-based data access (Poggi et al., [2008) use Datalog (Bienvenu et al., |2013;
Gottlob et al.,2014) as a basis. Following that, we apply macro expansion to the trans-
lated dl-programs and thus show how to efficiently evaluate dl-programs using MLPs.
Interestingly, the results here reduce in principle to the rewritings and optimization
techniques developed by Xiao (2013), the main difference being that their translations
are ad hoc for Datalog-rewritable DLs. We assume familiarity with Description Logics
and dl-programs as defined by Eiter et al. (2008).

6.5.1 Rewriting Description Logic Programs to MLPs

Let KB = (L, P) be a dl-program, let 1 = S;0p;p1, ..., S OPm Pm be an input list ap-
pearing in a dl-atom from P, and let C = {Cy, ..., Cy} and R = {Ry, ..., R/} be the set of
atomic concepts and the set of atomic roles from L, respectively.

We start with the definitions for rewriting the Description Logic knowledge base L.

Definition 6.28 (DL module).
The DL module for L is defined as the module

my = (PL[Cy, ..., Cp, Ry, ..., R, P(L))
such that W(L) = ®(L) U Tp, where
« ®(L) is a transformation from DL knowledge base L to a Datalog program, and

« Tp is the set of facts T(a) and T2(a, b) for each constant a, b in the Herbrand
universe of P.

Note that ® is a generic transformation for Datalog-rewritable Description Logics L;
confer Xiao (2013, Definition 4.1) for the details. For simplicity, we assume that all
Description Logics knowledge bases are using the £DL* Description Logic (Xiao,
2013), which is a Datalog-rewritable Description Logic. Thus, in the rest of this section,
we identify @ with the transformation ® ;4 + defined by Xiao (2013, Section 4.2.2).

Example 6.14 Let KB = (L, P) be a dl-program over £LDL* Description Logic knowl-
edge base L = {C C D,D C VR.E}, where C, D, E are atomic concepts and R is an
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atomic role, and the logic program

c(a) «
P = g r(a,b) <
qg(X) <« DL[CWc,Ryr; E](X)

Then, ¥(L) = ®(L) U Tp consists of

[ DX) <« CcX)
(L) = 1 E(Y) < D(X),R(X,Y) } .

and Tp = {T(a), T(b), T%(a,b), T?(b, @)}, and the DL module for L is
my, = (P[C,D,E,R], (L)) .

Next, we give definitions for rewriting input lists.

Definition 6.29 (Transfer module).
For a concept or role S; from a input list A, we define the transfer rule p(S;) as

S) = s, (X) < q;(X) if S; is an atomic concept
PO = rs,(X,Y) « q(X,Y) if S;is an atomic role
The transfer rules for A is the set of rules p(4) = {p(S;) | S; is from A}.
For a dl-atom q = DL[A; Q](t), we define the query rule 8(q) as the rule

Q(t) « PL[ccla ceey Cck’ rRl’ eeey ng]'Q(t) .
The query rules for 4 is the set of rules
9(A) = {8(q) | dl-atom q appears in P with input list 1} .

Given an input list A = Sj0p;p1, - » S 0PmPm from a rule appearing in the dl-
program KB = (L, P), we define the transfer module for 1 as m; = (P;[q1, - » @ml, R1)s
where g; is an input predicate matching the arity of p; and R; = p(4) U 8(4).

Intuitively, the module atom P L[CC1 s s CCps TRy o5 IR g].Q(t) stands for the DL atom
q = DL[4; Q](t), and 8(q) then assigns a truth value to Boolean DL queries Q(c) based
on the truth values for ordinary atoms Q(c) in DL module m; for the input list 4
encoded by the module input c¢, ..., ey 1Rys -+ 5 Ir,- Note that we can use Q(t) in my,
since @ is defined to be a preserving transformation (Xiao, 2013), i.e., concept and roles
in L are mapped to identically named predicates in ®(L).
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Example 6.15 (cont’d) For the input list A = C W c,R @ r of dl-atom
a=DL[CWc,R¥r;E]|(X)
from KB in the previous example, the transfer rules are

_ cc(X) < gq.(X)
p(l) - { rR()g’Y) « qr(XsY)} ’

the query rule for a is
¥a) = E(X) < Prlec, cp,cg, rrl- E(XX)

and the query rules for A are 3(1) = {8(a)}. The transfer module m is the MLP module
(P1lqc, 9r], R2), where Ry = p(4) U 8(4).

We can now formally define the dl-program rewriting.

Definition 6.30 (dl-program rewriting).
Let A = {1;,...,4;} be the set of all input lists that appear in a dl-atom from the dl-
program KB = (L, P). The dl-program rewriting of KB is the MLP

A(KB) = (mp,m,,my, ..., m,lj)

such that mp = (P[], P’) is the main module, where P’ is the program P with each
dl-atom DL[A; Q](t) replaced by the module atom P;[py, ..., Py ]-Q(t) such that 1 =

S10p1D15 -+ » SmOPmPm-

Example 6.16 (cont’d) The dl-program rewriting A(KB) for our running example is
the MLP (mp, my, m;), where mp = (P[], P') such that

cla) «
P’ =4 r(a,b) «
q(X) < Pyle,r].E(X)

For the next results, we let I be an interpretation for dl-program KB and define I'*
in analogy to Xiao (2013, Lemma 4.5) and let

S(A,I) ={qi(c) | S; ¥ p;isin A and p;(c) € I} .

Lemma 6.12
Let I be an interpretation for dl-program KB and Q(c) be a Boolean DL query. Then,
IY E Q;(c) if and only if M, P4[S] E Q(¢) such that S = S(4,I), where

b MP/QZI)
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« M;/T = MM (®(L)UT) for all P;[T], and
+ for p(T) = {c5,(a) | 4i(a) € T}U {r5,(@.b) | qi(a, b) € T}, we let

M;/T=T U,O(T) U
C1ysCe,R1, R
{Q(c) | Q(c) € M /S such that S = p(T)ICél,...,c’ék,erl,..ere}
for all P4[T].

Proor We prove both directions.

Y E Qa(c) & Qz(c) € MM (W(L; U {S;,(cy) | pile;) € 1) (6.22)
< Q(c) € MM (Y(L) U{Si(c;) | pi(cy) € I}) (6.23)
< Q(c) € M /T for T = {Si(¢;) | pi(ey) € I} (6.24)
< Q(c) € My/T for T = {q;(¢c;) | pi(cy) € I} (6.25)
< M, P;[S] E Q(c) for S = S(A,T) (6.26)

The first equivalence follows from Xiao (2013, Lemma 4.5). In we use the
modularity property of ¥ of Xiao (2013, Definition 4.1) and that ¥ preserves names
in L. Equivalence holds since M} /T = MM (W(L) U T). For we use that
M/T first translates g; to the concept and role atoms cg, and 75, with po(T') and then
maps them as input to Py [Cy, ..., C, Ry, ..., Rp], thus g;(c) € T if and only if p;(c;) € 1.
The last equivalence then follows immediately by setting S to T. O

We can now show the following.

Proposition 6.13 (DL-rewriting)
Let KB = (L, P) be a dl-program over a Datalog-rewritable Description Logic. Then,
the answer sets of KB correspond one-to-one to the answer sets of A(KB).

Proor Based on Xiao (2013, Lemma 4.5), we can extend an answer set M from KB to
an answer set M'* for W(KB). Let M® be an interpretation based on M'¥ for A(KB) as

defined in We get that MY E Q;(c) if and only if M, P;[S] E Q(c) such
that S = S(4, M). Hence, the FLP-reduct f A(KB)(P[@])MA is equivalent to the strong
dl-transform sPiV[ , which follows from Mp/@ = M. O

6.5.2 Macro Expansion for dI-Programs

In this section we show how to apply macro expansion introduced in §6.4]to dl-program
rewriting. The key to macro expansion is defining a DL module rewriting sequence
for macro expansion. shows the module dependencies of the MLP A(KB)
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mp

mj m,

1

my,

Figure 6.5: Module dependencies of dl-program rewriting

for a given dl-program KB. Clearly, the module dependencies are acyclic, hence we
can copy the DL module my, into transfer modules m, , and then copy the result into
mp. When we do this for all input lists 4y, ..., 4; appearing in KB, we end up in an
MLP that consists of a rewritten main module mp containing j copies of m;, and all
transfer modules m,,. After applying module removal using modules my, m, ,...,m A
as separated part as shown in we have a single main module MLP without input
as result, which can be evaluated in a Datalog engine.

Let KB = (L, P) be a dl-program over a Datalog-rewritable Description Logic L. In
the following, we assume that the module calls of A(KB) have been reified using the
technique from such that each library module has exactly one input parameter, i.e.,
the DL module m; = (Pr[qr], ¥(L)) has the input parameter q;, and transfer modules
m; = (P;[q.], Ry) have input parameter q;. Furthermore, the module calls in m; have
D1, as predicate parameter, and the main module mp use p, as parameter.

Example 6.17 (cont’d) Given KB and A(KB) from such that module
atom e; = P;[c,r].E(X) and module atom e, = Pr[cc,cp,Cg, 'r]-E(X), the module
input reified MLP A(KB)' = (mp, my, m}), where main module mp = (P[], P") such
that

c(a) <
r(a,b) «
P ={ p*1,X,¢) < c(X) ,
PM(2,X,Y) < r(X,Y)
q(X) < P;[p*].E(X)
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transfer module m} = (P;[q;], R;) with

( gcX) < q2(1,X,¢) )
gr(X,Y) < q;(2,X,Y)
pr(1,X,€) « cc(X)
Ry =pUi pH2,X,e) < cp(X)
pr(3,X,¢€) « cg(X)
pl(4,X,Y) <« cg(X,Y)
\ E(X) « Pr[p*].E(X) )

~~

and DL module m; = (Pr[qr], Ry), where

CX) <« qr.(1,X,¢)
D(X) - QL(Z,X, €)
E(X) - qL(3’Xa €)
RIX,Y) « qr.(4,X,Y)

Definition 6.31 (DL module rewriting sequence).
Let A = {4, ..., 4} be the set of all input lists that appear in a dl-atom from dl-program
KB = (L, P). We say that

0 = 01,p01,.02, P02 L ** 0j-1,P%-1,L9,PYj,L
is a DL module rewriting sequence, where each rewriting step is defined as
« 0 = (mg,my, pr) fori €{1,..., j}, and
« g,p = (my, mp,p;) fori €{l,..., j}.

In the following, let Bz = {mg,my,, ..., mlj} be the set of modules from A(KB)
without mp. We can now show the following results.

Proposition 6.14 (DL-module separation)
The answer sets of MLP A(KB) correspond one-to-one to the answer sets of MLP
6(A(P)).

Proor This follows from [Proposition 6.7, since 6 is an admissible rewriting sequence
with respect to Byp. O

The next result shows that we can remove all modules from Pz, thus only mp with
the appropriate module copies is required to evaluate A(KB).

Proposition 6.15 (DL-module pruning)
The answer sets of MLP O(A(KB)) correspond one-to-one to the answer sets of MLP
6(A(P)) — Fp.
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Proor This follows from [Proposition 6.10} since 8 is a module-oriented rewriting se-
quence and Fyp is a pruning set with respect to 6. O

The next result follows immediately from [Proposition 6.13| [Proposition 6.14, and
[Proposition 6.15]

Corollary 6.16 (Separated DL-module removal)

The answer sets of dl-program KB correspond one-to-one to the answer sets of the
MLP 8(A(KB)) — Bg.

One can extend this technique to rewrite only parts of A(KB). For instance, we may
copy only the Horn-parts into mp and leave the remainder alone. Subsequent module
removals then only discards the transfer modules that were involved in the Horn-parts
of A(KB).

Standard dl-programs only allow to access a single ontology L. As a mild extension,
we may introduce dl-programs KB = (P, Ly, ..., Li) such that P has dl-atoms access-
ing different ontologies L;. With MLPs, such an extension can be swiftly captured by
introducing k different DL modules my,...,mg,, which do not call any further mod-
ules. Transfer modules than prepare the input for each of them. Similarly, we may add
further MLP modules to A(KB), which can be used in P from KB.
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Representing Modular
Nonmonotonic Logic Programs with
Classical Logic

E further the work on MLPs and turn to characterizing answer sets in
terms of classical models in this chapter, which is in line with recent
research in Answer Set Programming. To this end, we first explore
the notion of loop formulas to MLPs. Lin and Zhao (2004) first used
loop formulas to characterize the answer sets of normal, i.e., disjunction-free, proposi-
tional logic programs by the models of a propositional formula comprised of the Clark
completion (Clark, 1978) and of additional formulas for each positive loop in the depen-
dency graph of the program. They built on this result by developing the ASP solver
ASSAT, which uses a SAT solver for answer set computation (Lin and Zhao, [2004).
The loop formula characterization has subsequently been extended to disjunctive logic
programs (Lee and Lifschitz, 2003), and to general propositional theories under a gen-
eralized notion of answer set (Ferraris et al., [2006). In the latter work, the notion of
a loop has been adapted to include trivial loops (singletons) in order to recast Clark’s
completion as loop formulas. Besides their impact on ASP solver development, loop
formulas are a viable means for the study of semantic properties of ASP programs, as
they allow to resort to classical logic for characterization. For instance, in the realm of
modular logic programming, loop formulas have recently been fruitfully extended to
DLP-functions (Janhunen et al.,|2009b), simplifying some major proofs.

The expedient properties of MLPs, however, render a generalization of loop for-
mulas more involved. Due to the module input mechanism, it is necessary to keep
track of different module instantiations. Furthermore, because of unlimited recursion
in addition to loops that occur inside a module, loops across module boundaries, i.e.,
when modules refer to each other by module atoms, have to be captured properly. To
cope with this requirements,
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we adapt Clark’s completion for module atoms with respect to different module
instantiations;

« we provide a refined version of the positive dependency graph for an MLP, the
modular dependency graph, and cyclic instantiation signature: the combination
then relates module instantiations with the atoms of a module;

« based on it, we define modular loops and their external support formulas; and

- eventually, we define modular loop formulas, and show that the conjunction of
all modular loop formulas for an MLP characterizes the answer sets of P in its
(Herbrand) models.

Second, we explore the recent approach of Asuncion et al. (2012) to modify the
Clark completion in order to characterize answer set semantics of nonmonotonic logic
programs with finite Herbrand universes but Without using loop formulas explicitly.

The idea is to introduce predicates of the form Dg’ Pi(S (y, x) which intuitively holds
when q(y) at value call P;[T] is used to derive p(x) at Value call P;[S], and to respect

a derivation order. The completion is allowed to take effect only if no positive loop

is present, which is ensured by adding Dq’Pk[[S]](y, Xx) A~ 5 P,ii] (x,y) in the com-

pletion of rules with head p(x) and q(y) in the positive body. For that to work, we

must ensure that Dq’P [S ](y, x) respects transitive derivations, i.e., the composition

of D 5 [[%(X y) and Dr P [U](y, z) must be contained in D 15; [[“ISJ]](X, z). The resulting

translatlon is called ordered completion.

An advantage of this approach is that, at the cost of fresh (existential) predicates,
constructing the (possible exponentially) many loop formulas can be avoided, while
answer sets may be extracted from the (Herbrand) models of a first-order sentence,
which may be fed into a suitable theorem prover. This similarly applies to MLPs, where
unrestricted call by value however leads to an unavoidable blowup, which may be
avoided by resorting to higher-order logic. Independent of computational perspectives,
the novel characterizations widen our understanding of MLPs and they may prove
useful for semantic investigations, similarly to those by Janhunen et al. (2009b).

In this chapter, we restrict our investigations to normal MLPs. There is no princi-
pal obstacle to extend the loop formula encoding given here to disjunctive MLPs, and
doing this would require to change just aspects of the propositional formulas given
here without changing the structure of the formulas. In contrast, ordered comple-
tion formulas for disjunctive MLPs and already ordinary logic programs need further
work; they may require a blowup given that ordinary disjunctive Datalog programs
are NEXPNP-complete.

In the sequel, we will characterize the answer sets of normal MLPs

« via loop formulas and program completion,
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« via second-order logic formulation, and
« via ordered completion.
Such characterizations consist of the following parts:
« the completion, which singles out classical models, which is studied in

« the loop formulas, which take care of minimality (foundedness) aspects; this will
be considered in

« atranslational semantics using second-order logic, which is based on completion
and minimality formulation in §7.3.1;

« alternatively, the completion can be made ordered, which we present in §7.3.2]

7.1 Program Completion for MLPs

We start with adapting the classical Clark completion (Clark, [1978) to cater for module
atoms. The intuition behind this adaption is to replace every module atom B(y) =
Py [p]-o(y) in module m; by a formula u(P;[S], f(y)), which selects the value call P, [T]
for my. and the truth value for o(c) based on the value of the input atoms p for value
call P;[S].

Throughout this chapter we assume that predicate names appearing in the modules
of an MLP P are not shared in two different modules of P. Furthermore, we assume
that the variables in the head of all rules in P mentioning the predicate symbol a share
the same distinct variables x, i.e., H(r) = {a(x)} for all rules r with predicate a in
the head. Additionally, we assume that P does not contain constant symbols; every
constant in P can be replaced by a singleton unary relation.

Given a set S C HBp of ordinary atoms, we assume that S is enumerated, i.e.,
S = {ay,...,a,} where n = |S|. We identify subsets B of S with their characteristic
function y2: S — {0, 1} such that y2(a) = 1 iffa € B.

For any ordinary atom a(x) and any set of ground ordinary atoms A, let a®(x)
denote a fresh atom, and for any set B of ordinary atoms, let B4 = {a“(x) | a(x) € B}.
Let 7.A = {—a(x) | a(x) € A} and, as usual, \/F = \/feFf and A\F = /\feFf'
Note that \/ @ = Land A@=T.

Given a rule r of form (3.2), for x € {+, -}, let BJ(r) and B;;,(r) be the sets of
ordinary and module atoms appearing in B*(r), respectively.

For the following definitions, let P be a normal MLP, and let m; = (P;[q;], R;) and
my = (Prlqkl, Rx) be two modules from P.
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Definition 7.1 (Module atom completion).

Let B(z) = Py[p].o(z) be a module atom appearing in a rule from module m;, let
qk = 4k, -9k, be the formal input parameter for module my, and let P;[S] and
P [T] be two value calls from VC(P). We define

€
esLrth= /A N\ pior A -pi© .

J=1 xT(gy,j(e))=1 xT(qy,j(e)=0

The module atom completion formulas are defined as

u@ilS1.p@) = \/  (c(PilS1.PcT]) Ao (2))

Py[T]evc(P)

and

a@Pi[s1.p@) = \/  (ePilSL.PT]) A =0"(2) .

Py[T]evc(P)

Intuitively, e(P;[S], Px[T]) encodes the module input for calls from value call P;[S]
to Pi[T]. The module atom completion formulas u(P;[S], B(z)) and f(P;[S], B(z)) se-
lect from a given value call P;[S] (the calling module) one of the target value calls Py [T]
such that some instance of 07 (z) is true in u(P;[S], B(z)) whenever 3(z) appears in the
positive body of a rule, and if 3(z) appears in the negative body of a rule, then we use
@(P;[S], B(2)) to address an instance of 0 (z) being false.

Next we define support rules.

Definition 7.2 (Support rules).
Let R be a set of normal rules, then the support rules of R with respect to an ordinary
atom a(t) is

SR(a(t),R) ={r e R| H(r) ={a(t)}} .

We can now define modular completion, which relates instantiations of the rules
in a module to propositional formulas. We will reuse some of the formulas later in a
nonground setting, thus the definitions apply to nonground programs.

Definition 7.3 (Modular completion).
Letr € R(m;) be arule, let P;[S] € VC(P) be a value call, and let y be the free variables
in the body of r. We define

B(PiISLr) =3y | A\ BE )’ A J\ u®ilS1B@) A )\ ~B5()° A \ H(Pi[S], B(2))
B(z)eBm(r) B(z)EBm(r)
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and for an atom a(x) appearing in some rule head, we let

y(P[S], a(x) = vX[ \/ B@is1.r) > aS<x>]

reSR(a(x),R(m;))

and

a(P[S], a(x)) = ¥x [a5<x> > \/ Beils], r)] :

resrR(a(x),R(m;))

For any value call P;[S] of module m;, let

y(®,P[S]) = /\ y®i[S], a() A \ ¢ j(e)

reR(m)ra(x)eH (r) x5(g;,j(c)=1

and

o(P,Pi[S]) = \ o(Pi[S], a(x)) ,

reR(mj)ra(x)eH(r)

and for an MLP P we define

y®) = /\ y(®.P[S])

P;[Sleve(p)

and

oP) = /\ o(®,PS)) .

P;[Sleve(p)

The intuition behind formulas B(P;[S],7) is to state that the whole body of a rule
r from Ip(P;[S]) is satisfied, which is going to be used in y(P;[S], a(x)) to encode that
for all x if one body of a rule with a(x) in the head is satisfied, then aS(x) must be
true. Formula o(P;[S], a(x)) gives the other direction that for all x if a(x) is true,
then one of the bodies must be satisfied. Formulas y(P, P;[S]) and (P, P;[S]) then
extend y(P;[S], a(x)) and o(P;[S], a(x)) for all possible rules from Ip(P;[S]); note that
y(P;[S], a(x)) additionally adds all atoms from S in value call P;[S]. The formulas y(P)
and o(P) then encode the whole MLP P by iterating over all possible value calls from
VC(P).

In the rest of this section, we assume that P is a ground normal MLP, thus the list
of terms t in [Definition 7.2l amount to a list of constant symbols ¢ from C.

We now give our two running examples that we use throughout this section.
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Figure 7.1: Callgraph for

Example 7.1 Let my; = (P[], R;) withR; = {p « P,[p].r} and m, = (P,[q], R,) with
R, = {r « q}. Then P = (m;, m,) is a normal MLP with the main module m;. The
program P has the single answer set (M/@ := @, M,/@ = @, M,/{q} := {r, q}).

The modular completion of P gives us the following formulas, where S; = @,
S? =@, and S} = {g}:

- Y@, P,[2]) = ((=pS ATSE) v (pS A TS2) D pS) AT,

- (P, P[] = (¢% D rS) AT,

- Y@, Pol{g}D) = (¢% > r52) A g5,
and

+ o(P,P1[@]) = p51 > (~pS AFSE) v (pS AT,

+ o(P,Py[@]) = r%% D ¢,

. o(P,P,[{g}]) = rS2 > ¢,

The conjunction of the first three formulas yields y(P), and the last three give us o(P).
Note that T in y(P, P;[@]) and y(P, P,[@]) stems from input &.

Example 7.2 For the MLP P in[Example 3.2| we get the following modular completion

formulas:
- y(P) = (pf > p?) A (p? > p?)
- o(P) = (pf > p¥) A (pF > PP)
For readability, we dropped T encoding the inputs @ of y(P, P;[@]) and y(P, P,[D]).
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The callgraphs for the programs defined in Examples[7.1land[3.2]are shown in Figures[7.1]
and[3.1] respectively. The former is acyclic, whereas that latter manifests cyclic module
calls. In the following we will show that a rule like p « P,[p].r from[Example 7.1
gives us an intriguing cyclic dependency, which does not materializes in the call graph
alone.

As a first result, we can now show that for a normal MLP P, formula y(P) captures
the classical models of P.

Lemma 7.1
The models of y(P) correspond one-to-one to the models of P. That is,

1. if M E y(P), then M E P, where M;/S = {p(c) E€HBp | pS(c)EM AP E IPi},
for all P;[S], and

2. if M E P, then M E y(P), where

M= ] s’ .

P;[Slevc(p)

Proor For showinglitem 1| suppose that M F y(P), and let M be as defined. We need
to show that M, P;[S] E r for each r € Ip(P;[S]) = R(m;) U S and P;[S] € VC(P).
If r is a fact gj(c) « for a formal input parameter q; of P;[q], then g;(c) € S and,
by M E y(P, P;[S]), we have M F qf(c); hence, qj(c) € M;/S, and thus M, P;[S] E r.
Otherwise, ¥ € R(m;). As M E y(P, P;[S]), we have that M satisfies y(P;[S], a) for
all rules r' € SR(a, R(m;)) such that H(r') = {a}, thus also for the rule r such that
H(r) = {a(c)}, hence M E y(P;[S], a(c)). By construction, for each ordinary atom
B(c) inr, we have M E 5(c) implies M, P;[S] E B(c); furthermore, M E u(P;[S], B(c))
for Py[p].o(c) implies M E oT(c), where T C HBp|,, is the unique set T such that
M E /\j(pJS(c) = q,f,j(c)). That is, M E u(P;[S], B(c)) implies M, P;[S] F fB(c).
This gives us that M E S(P;[S],r) implies M, P;[S] F B(r). Moreover, since M F
y(P;[S], a(c)) such that H(r) = {a(c)}, either M E a5(c), or M K \/ B(P;[S],7") for
all ¥’ € SR(a(c), R(m;)). Thus, M, P;[S] E H(r), or M, P;[S] ¥ B(r). Hence, it follows
that M, P;[S] E r for any r and P;[S] from P, thus M F P.

To provelitem 2} let M F P, and let M = UP,-[S]evc(P) (Ml-/S)S, To show that M E y(P),
we prove that M F y(P, P;[S]) for all P;[S]. As S C Ip(P;[S]) and M, P;[S] E Ip(P;[S]),
all conjuncts q‘]S (¢) (representing the formal input) in y(P, P;[S]) are satisfied by M;
thus it remains to show M E A y(P;[S], a(c)) for all a(c) appearing in some rule head
in R(m;). Let r € R(m;) such that H(r) = {a(c)}. For each ordinary atom S(c) in
r, we have by construction of M that M E 85(c) if M, P;[S] E B(c); furthermore, for
each module atom (c) = Pi[p].o(c) in r, we have that M F u(P;[S], B(c)) whenever
M E oT(c), which follows from o(c) € M;/T, where T C HBp|g, contains gy ;(c) if
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ME p‘;(c) whenever p;(c) € M;/S. Thus, M F u(P;[S], B(c)) if o(c) € My /(M;/S)|gx,
which we obtain from M, P;[S] E o(c). Now we have shown that M, P;[S] E B(r)
implies M F B(P;[S],r). As M, P;[S] F r, we have that M, P;[S| F H(r) or M, P;[S] ¥
B(r). Therefore, M F y(P;[S], a(c)). We have shown that this holds for any a(c) and
P;[S], thus M E y(P). O

Apt et al. (1988) define supported models for logic programs. For a normal MLP P,
we can show that answer sets are supported minimal models of P, which has been
shown for normal logic programs by Marek and Subrahmanian (1992). We first gener-
alize the definition to MLPs.

Definition 7.4 (Supported models for MLPs).
A model M of a normal MLP P is called supported if for every atom a € M;/S, where
P;[S] € VC(P), there is some rule r € SR(a, Ip(P;[S])) such that M, P;[S] E B(r).

The following result shows that answer sets of P are supported models of P. The
reverse direction does not hold in general.

Proposition 7.2 (Supported models)
If M is an answer set of a normal MLP P, then M is a supported minimal model of P.

Proor Since M is an answer set, it is a minimal model of P by |Proposition 3.5| Towards
a contradiction, suppose M is not supported. There is an atom o € M;/S such that
all rules r € SR(a, Ip(P;[S])) satisfy M, P;[S] ¥ B(r). Hence, there is no rule r €
SR(at, Ip(P;[S])) such that r € f P(P;[S]™, contradicting M being a minimal model of
fP(P;[S]M. Therefore, M is a supported model of P. O

Example 7.3 In[Example 3.2] the following models of P are supported models of P:
« M; =(M,/@ = 3,M,/@ = @) and
« My = (My/@ = {p1}, M2/@D = {p.}).

While M; is an answer set of P, this does not hold for M,, since M; < M,.

Fages (1994) demonstrated for normal logic programs that supported models have
the intriguing property that whenever the rules in a program P are acyclic, i.e., no atom
depends recursively on itself (also called tight logic programs by Erdem and Lifschitz,
2003), then P has a single supported model, which gives rise to an answer set of P.

Based on the following can be shown for MLPs.

Lemma 7.3
The models of y(P) A o(P) correspond one-to-one to the supported models of P.
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Proor (=) Let M be a model of y(P) Ac(P) and let M be the interpretation defined in
[Lemma 7.1 fitem 1} Since M F y(P) Ac(P), we have M F y(P). By[Lemma 7.1, M F y(P)
implies M F P. We show now that M is a supported model, i.e., we show that for every
atom a € M;/S, there exists an r € SR(«, Ip(P;[S])) such that M, P;[S] E B(r).

Ifa € S, ie, ais of form g; j(c) from the formal input parameters of m;, then
M E y(P, P;|S]) implies that M, P;[S] E S, and therefore there exists a rule r € S with
H(r) = {a}, hence r € SR(a, S) and thus r € SR(«, Ip(P;[S])). As this r is a fact, we
have B(r) = @ and thus M, P;[S] E B(r) holds vacuously.

If « € M;/S \ S, we have a5 € M, and thus we can conclude from the formulas
in o(P, P;[S]) that the antecedent a® requires that the consequent \/ S(P;[S], r) is true
in M for r € SR(«, Ip(P;[S])). It follows that there must be at least one of the formu-
las B(P;[S],r) true in M. Let r be the rule from SR(«, R(m;)) such that M E B(P;[S], r).
Since M k B(‘)"(r)s and M E B;(r)s, we get that M, P;[S] E B (r) and M, P;[S] ¥
B; (r), thus ordinary atoms from B(r) are satisfied by M at P;[S]. Additionally, we have
M F u(P;[S], B(c)) and M F @(P;[S], B(c)) for each B(c) € By,(r) and B(c) € By(r),
respectively. Thus, at least one of the disjuncts (e(P;[S], P¢[T]) A oT(c)) or one of
the disjuncts (e(P;[S], Pe[T]) A —IOT(c)) is true in M for a B(¢) € B} (r) U B;,,(r).
From that we can conclude that M E 0T(c) implies M, P, [T] E B(c) = Py[p].o(c),
where T C HBp|g, is the unique set T such that M F /\j(pf(c) = qlz,j(c)). That is,
M & (P[], (e)) implies M, P[S] & B(c) for B(e) € By(r), and M F A(P,[S], B(c))
implies M, P;[S] ¥ (c) for B(c) € B;,(r). Hence, it follows that M, P;[S] F B(r), and
therefore M is a supported model of P.

(<) Let M be a supported model of P. Let M be an interpretation of y(P) A o(P) as
defined in|Lemma 7.1} [item 2| By |Lemma 7.1 we can conclude that M F y(P). We show
now that M E g(P). From the construction of M, we have a € M;/S iff a’ € M. Since
M is supported there is a rule r € SR(«, Ip(P;[S])) such that M, P;[S] E B(r). This
satisfies the formulas from o(P, P;[S]): since a® € M, M must satisfy the consequent
\ B(P;[S],r) for r € SR(a, Ip(P;[S))), i.e., at least one of the disjuncts B(P;[S], ) must
hold in M, which follows from M, P;[S] E B(r). Thus, M is a model for y(P) A o(P)..]

Example 7.4 (cont’d) We continue with Formula y(P) admits the fol-

lowing models:
« M, = {”S%’qsé},
o My = {pS1,r%,r%2, ¢},
« M; ={p1,r52,¢52}, and
» My ={p51,r%,r%2, %, g%},
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They correspond to the classical models

My, = (M,/@ = 3B, M,/D = B, M,/{q} = {r,q}),

M, = (M;/@ = {p}, M,/@ = {r}, M,/{q} = {r, q}),

M; = (M,/@ = {p}, M,/@ = @, M,/{q} := {r,q}), and
¢ M4 = (M1/® = {p}’MZ/Q = {}’, q}aMZ/{q} = {V, q})

for P. The formula y(P) A o(P) permits only M;, M3, and M, as models, which give
us the supported models M;, M3, and M, of P.

Example 7.5 (cont’d) In[Example 7.2] the models of y(P) are
« M, = @and

« M, = {pf’ pg}’

which are also the models of y(P) A o(P). Both of them correspond to the classical as
well as supported models of P, namely

« M; =(M,/@ = 3,M,/@ = @) and

« My, = (M;/@ = {p:1}, M2/ = {p,}).

7.2 Loop Formulas for MLPs

In this section, we develop modular loop formulas that instantiate each program mod-
ule with possible input to create the classical theory of the program, and then add
loop formulas similar to the approach of Lee and Lifschitz (2003) and Lin and Zhao
(2004). However, we have to respect loops not only inside a module, but also across
modules due to module atoms. The latter will be captured by a modular dependency
graph, which records positive dependencies that relate module instantiations with the
atoms in a module. The instantiation of the modules makes it necessary to create fresh
propositional atoms very similarly to grounding of logic programs, and our complexity
results in Chapter [ suggest that there is no way to circumvent this; see Tables
for a synopsis of the complexity results. In the rest of this section, we assume that
MLP P is ground and normal.

We define now the modular dependency graph to keep track of dependencies be-
tween modules and rules. It is a ground dependency graph with two additional types
of edges.
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(a) [Example 7.1 (b) [Example 3.2

() ‘ "

Figure 7.2: Modular dependency graphs

Definition 7.5 (Modular dependency graph).

Let P = (my, ..., m,) be a normal MLP. The modular dependency graph of P is the di-
graph MGp = (V, E) with vertex set V' = HBp and edge set E containing the following
edges:

« p(cy) = q(cy), for each r € R(m;) with H(r) = {p(c,)} and q(c,) € B*(r).

« a — b, if one of ({{)~(2) holds, where « is of the form P;[p].o(c) in R(im;) and P;
has the associated input list q;:

1. a =aand b = o(c) € HBp;
2. a=q,(c) e HBP|qJ. and b = p,(c) € HBp|, for 1 < ¢ <q;|.

Intuitively, the modular dependency graph does not cater for module instantia-
tions, i.e., all module atoms are purely syntactic and the dependencies between atoms
are coarse. This also means that cycles that show up in the modular dependency graph
must be instantiated in the formulas.

Example 7.6 (cont’d) The modular dependency graphs of the MLPs defined in Exam-

ples[7.1 and [3.2] are shown in Figures and respectively. In both figures, the
two upper nodes are from m,, while the nodes below stem from m;. Note that the

dashed edges stem from condition (1) in while dotted edges are from
condition (2). Straight edges are standard head-body dependencies.

Next, we define modular loops, which are based on modular dependency graphs.

Definition 7.6 (Modular loops).
A set of atoms £ C V(MGp) is called a modular loop for P iff the subgraph of MGp
induced by £ is strongly connected.

Note that £ may contain module atoms, and single-atom loops are allowed.
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Modular loop formulas have then the same shape as standard loop formulas (Lee
and Lifschitz, [2003; Lin and Zhao, 2004), with the important distinction that external
support formulas may take the input S from the value call P;[S]. For that, we first
define external support rules.

Definition 7.7 (External support rules).
Let R be a set of ground normal rules. The external support rules of R with respect to a
set of atoms £ C HBp is

ER(L,R)={reR|Hr)NL#BABT(rnL =2} .

Note that £ may contain module atoms.

Modular loops may go through the atoms of multiple modules, but do not take care
of cycles over module instantiations that stem from the input. Given a modular loop,
the instantiated loop may be exponentially longer in the propositional case, whereas
it could have double-exponential length in the nonground case. To keep record of
these loops, we next define cyclic instantiation signatures that are used to instantiate
modular loops. In the following, let P = (m,, ..., m,) be a normal MLP such that the
set of predicate symbols P = P; U --- U P, such that P; consists only of predicate
symbols from m;.

Definition 7.8 (Cyclic instantiation signature).

Let £ be a modular loop for the normal MLP P = (P;[q,], ..., Px[qn])- A cyclic instan-
tiation signature for £ is a tuple 8 = (8y, ..., 8y), where each 8; C 2MBrly; i o family of
sets over HBp|,, such that

1. 8§ #@andall S € §; satisfy S N L = &, whenever £ contains ground atoms
with predicates from P;, and

2. 8; = @ otherwise.

Intuitively, we use a modular loop as template to create loops that go over module
instantiations, as illustrated in the next examples.

Example 7.7 (cont’d) The MLP P in [Example 7.1 has the loop £ = {p, P,[p].r,7, g},
for which we get one cyclic instantiation signature 8; = ({@},{@}). Note that the tu-

ples (@}, {{g}}) and ({@}, {@, {g}}) are not cyclic instantiation signatures as they share
atoms with £, thus always get support from input S. Intuitively, this captures those
module instantiations that cycle over module input, but have no support from the for-
mal input, viz., P1[@] < P,[&].

Example 7.8 (cont’d) In we have a loop £ = {p;, P,.p5, P2, P1.p1}. We
get one cyclic instantiation signatures: 8; = ({@},{@}). Here, 8; builds a cycle over

module instantiations from the mutual calls in m; and m,.
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Based on modular loops, cyclic instantiation signatures, and external support rule,
we are now in the position to define modular loop formulas for normal MLPs.

Definition 7.9 (Modular loop formulas).
Let 8 = (84,...,8,,) be an instantiation signature for the modular loop £ in MLP P.
The loop formula A(S, £,P) for £ with respect to S in P is

n

VVVeR) >V VHEO 26@IsIN) . 0
es;

i=1T i=1 SeS; reER(L,Ip(Pi[S]))

Given P, the loop formula for a modular loop £ in P is the conjunction

AL, P) = [\ A8, £,P)
S

for all cyclic instantiation signatures S of £, and the loop formula for P is the conjunc-
tion

AP) = \ AL, P)
L
for all modular loops £ in P. The modular loop formula for the MLP P is then
AP) =y(P)Ac(P)AAP) .

Intuitively, the formal input in a value call P;[S] always adds external support for
the input atoms in S as we add S to the instantiation Ip(P;[S]). Since we obtain all
supported models with y(P) A o(P), thus also have S there, we can restrict to those
instantiation signatures 8 for a modular loop £ that have no support from formal input.

Example 7.9 (cont’d) Continuing with [Example 7.1 we get the following modular

loop formulas based on the loop £ and instantiation signature 8; for £ shown in
(here, S1=@,8) =) A(8,L,P) = (pSrv rSa v qsg) D L. This formula
and y(P) A o(P) yield A(P), whose model is M; = {rs% , qS% }, which coincides with the
answer set M; = (&, @,1{r, q}) of P.

Example 7.10 (cont’d) Based on Examples|7.2|and [7.8| we get the following modular
loop formulas using the loop £ and instantiation signature 8; (S = @): 4(8;,£,P) =
pls \% pf D 1V L. The conjunction of y(P) A o(P) and A(8;, £, P) yields formula A(P),
and its model is thus M; = @, which coincides with the single answer set M; = (@, &)
of P.

We can now state our main result and show that A(P) captures the answer sets of
normal MLPs P.
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Theorem 7.4 (MLP loop formulas)
Given a normal MLP P the answer sets of P and the models of A(P) correspond, such
that

1. if M E A(P), then there is some answer set M of P such that M;/S = {p(c) €
HBp | pS(c) € M A p € P} for all P;[S] € VC(P), and

2. if M is an answer set of P, then M F A(P), where

M= |J s’ .

P;[Slevc(p)

Proor Since a modular loop £ might span over multiple modules, we need to look at
the rules from multiple module instantiations. Let m(£) = {m; , ..., m;, } be the set of
all modules whose module atoms appear in £.

We begin with proving Let M F A(P). Since M F y(P) and M F o(P),
implies that M is a supported model of P. We show now that M is the model
of P whose atoms in each M;/S can be derived from f P(P;[S])M for all P;[S] € VC(P).
Thus, M must be the minimal model for f PM. Since M E A(P), for all cyclic instanti-
ation signature § and all modular loops £ the formulas A(S, £, P) are satisfied by M.
Observe that for a modular loop £, there always exists a subset-maximal loop £’ such
that £ C £’ and there is no modular loop £” such that £' C £".

Let R, be the rule base inheriting rules from f PM such that both the body and the
head is true in M, i.e.,

Ro = (Fps1 | Pi[S] € VC(P))

where
Fpys) = {r € fP(P,[SD¥ | M, Pi[S] F H(r) AM, P[S] F B(r)} .
For k > 0 we inductively define R, as follows:

Rk if there is no modular loop in Ry
k1 LR(S, Ly, Ry) for the subset-maximal loop £y in R with respect to 8

where for the rule base R, = (Rpl.[s]), modular loop £y, and cyclic instantiation sig-
nature S we let

LR(S, L1, Ri) = (Rp,1s1(£Li) \ Epys) (L) | m; € m(L) AS € 8;)
such that

B Hr)nLy #BABY(r)n Ly # OA
Rpys)(Lie) = {r € Resi | M, p,[S] E H(P) A M, P[S] E B() }
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and

ot -remn 5 AT |

Note that there always exists an Ep [s1(£y) which is nonempty: £; must be a modular
loop in P as well, and since both M E A(S, £y, Ip(P;[S])) and M E pS for some p € Ly,
we must have arule 7’ € ER(Ly, Ip(P;[S])) whose body B(r’) is satisfied by M at P;[S].

Intuitively, starting from a maximal loop £ the rule base Rj,; removes those
rules from Ry that “break” the cycle £y in P—i.e., from the rules Rp,s)(£y)—using
externally supported rules from Ep,[5(£y). The result is Ry, which might contain
a different maximal modular loop £, that is set for removal in R, ,. Eventually, as
M E A(P), no loop will be left, as argued next.

There exists a finite € such that for all m > ¢, R,,, = R, and R, does not have any
modular loops since we started with R having only a finite number of modular loops
and every Ry, k > 0, is a sub-rule base of R,.

Next, we show that for each atom a € M;/S, there is a rule r from R, such that
H(r) = {a}. We proceed by induction on k > 0. For the base case k = 0, from
we deduce that there is a rule r € Ip(P;[S]) such that H(r) = {a} since
M, P;[S] E B(r), hence r € fP(P;[S])™ and by construction r € Fp,s) from R. For
the inductive step, assume that our claim holds for R such that k > 0. We show now
that the statement holds for R, as well. We obtain the following cases:

« If R} has no modular loops, then R ,; = Ry and our claim follows immediately.

« If R has a modular loop, then Ry is the result of removing Ep,[5)(£y) from
Ry for the maximal modular loop £y in Ry.

Therefore